首页> 外文期刊>International journal of parallel programming >DMR: A Deterministic MapReduce for Multicore Systems
【24h】

DMR: A Deterministic MapReduce for Multicore Systems

机译:DMR:多核系统的确定性MapReduce

获取原文
获取原文并翻译 | 示例

摘要

MapReduce has been shown promising to harness the multicore platform. Existing MapReduce libraries on multicore are written with shared-memory Pthreads, which introduce pervasive nondeterminism and might produce nondeter-ministic results if user-provided map or reduce functions are sensitive to the input order. We propose DMR, a deterministic MapReduce library, to ensure deterministic program behaviors no matter whether map/reduce function is sensitive to the input order. DMR adopts a round-robin scheduling of map tasks and a partitioned scheduling of reduce tasks to ensure deterministic scheduling. DMR is written with a deterministic message passing multithreaded model (DetMP) to provide Phoenix-like API, thus Phoenix workloads can be built and run on DMR with no or little change. Evaluation results by testing seven Phoenix workloads show that DMR only runs worse than Phoenix on an iterative MapReduce application kmeans, outperforms Phoenix between 1.42X and 3.33X faster on pea and word_count, and scales better than Phoenix on 3 of the rest 4 workloads.
机译:事实证明,MapReduce有望利用多核平台。多核上现有的MapReduce库是使用共享内存Pthread编写的,它们会引起普遍的不确定性,如果用户提供的map或reduce函数对输入顺序敏感,则可能会产生不确定的结果。我们建议使用DMR(确定性MapReduce库)来确保确定性程序行为,无论map / reduce函数是否对输入顺序敏感。 DMR采用映射任务的循环调度和归约任务的分区调度,以确保确定性的调度。 DMR使用确定性消息传递多线程模型(DetMP)编写,以提供类似Phoenix的API,因此可以在DMR上构建和运行Phoenix工作负载,而无需进行任何更改。通过测试七个Phoenix工作负载的评估结果表明,在迭代的MapReduce应用程序kmeans上,DMR的运行情况仅比Phoenix更差,在pea和word_count上的运行速度比Phoenix快1.42到3.33X,并且在其余4个工作负载中,其扩展性都优于Phoenix。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号