首页> 外文期刊>International journal of modeling, simulation and scientific computing >Improved knowledge-based neural network (KBNN) model for predicting spring-back angles in metal sheet bending
【24h】

Improved knowledge-based neural network (KBNN) model for predicting spring-back angles in metal sheet bending

机译:改进的基于知识的神经网络(KBNN)模型,用于预测金属板弯曲中的回弹角

获取原文
获取原文并翻译 | 示例

摘要

We develop an efficiently improved knowledge-based neural network (KBNN) associated with optimization algorithms and finite element analysis (FEA) to accurately predict spring-back angles in metal sheet bending. The well-known V and U prevalent processes of bending are considered. The KBNN predictive results are based on the empirical model and artificial neural network (ANN) modeling. The empirical model is constructed from the FEA results using response surface method, while the multilayer perceptron is employed to create the ANN. The trained KBNN can accurately model the relationship between the spring-back angles and process parameters. The obtained results are validated against other existing methods showing a high accuracy.
机译:我们开发了一种有效改进的,基于知识的神经网络(KBNN),与优化算法和有限元分析(FEA)相关联,以准确预测金属板弯曲中的回弹角度。考虑了众所周知的V和U弯曲流行过程。 KBNN的预测结果基于经验模型和人工神经网络(ANN)建模。经验模型是使用响应面法从有限元分析结果构建的,而多层感知器则用于创建人工神经网络。训练有素的KBNN可以准确地模拟回弹角度与过程参数之间的关系。相对于其他显示高精度的现有方法,验证了所获得的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号