首页> 外文期刊>International journal of modeling, simulation and scientific computing >HIGH ORDER ACCURATE QUINTIC NONPOLYNOMIAL SPLINE FINITE DIFFERENCE APPROXIMATIONS FOR THE NUMERICAL SOLUTION OF NON-LINEAR TWO POINT BOUNDARY VALUE PROBLEMS
【24h】

HIGH ORDER ACCURATE QUINTIC NONPOLYNOMIAL SPLINE FINITE DIFFERENCE APPROXIMATIONS FOR THE NUMERICAL SOLUTION OF NON-LINEAR TWO POINT BOUNDARY VALUE PROBLEMS

机译:非线性两点边值问题的数值解的高阶精确五次非多项式样条有限差分逼近

获取原文
获取原文并翻译 | 示例

摘要

We develop a new sixth-order accurate numerical scheme for the solution of two point boundary value problems. The scheme uses nonpolynomial spline basis and high order finite difference approximations. With the help of spline functions, we derive consistency conditions and it is used to derive high order discretizations of the first derivative. The resulting difference schemes are solved by the standard Newton's method and have very small computing time. The new method is analyzed for its convergence and the efficiency of the proposed scheme is illustrated by convection-diffusion problem and nonlinear Lotka-Volterra equation. The order of convergence and maximum absolute errors are computed to present the utility of the new scheme.
机译:针对两点边值问题,我们开发了一种新的六阶精确数值方案。该方案使用非多项式样条基和高阶有限差分近似。在样条函数的帮助下,我们导出了一致性条件,并用于导出一阶导数的高阶离散化。通过标准的牛顿法可以解决由此产生的差异方案,并且计算时间非常短。分析了该新方法的收敛性,并通过对流扩散问题和非线性Lotka-Volterra方程说明了该方法的有效性。计算收敛阶数和最大绝对误差以表示新方案的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号