首页> 外文期刊>International journal of modeling, simulation and scientific computing >Particle swarm optimization with variable neighborhood search for multiobjective flexible job shop scheduling problem
【24h】

Particle swarm optimization with variable neighborhood search for multiobjective flexible job shop scheduling problem

机译:可变邻域搜索的粒子群算法求解多目标柔性作业车间调度问题

获取原文
获取原文并翻译 | 示例

摘要

The simulation on benchmarks is a very simple and efficient method to evaluate the performance of the algorithm for solving flexible job shop scheduling model. Due to the assignment and scheduling decisions, flexible job shop scheduling problem (FJSP) becomes extremely hard to solve for production management. A discrete multi-objective particle swarm optimization (PSO) and simulated annealing (SA) algorithm with variable neighborhood search is developed for FJSP with three criteria: the makespan, the total workload and the critical machine workload. Firstly, a discrete PSO is designed and then SA algorithm performs variable neighborhood search integrating two neighborhoods on public critical block to enhance the search ability. Finally, the selection strategy of the personal-best individual and global-best individual from the external archive is developed in multi-objective optimization. Through the experimental simulation on matlab, the tests on Kacem instances, Brdata instances and BCdata instances show that the modified discrete multi-objective PSO algorithm is a promising and valid method for optimizing FJSP with three criteria.
机译:基准仿真是一种非常简单有效的方法,可以评估算法的性能,以解决柔性作业车间调度模型。由于分配和调度决策,灵活的作业车间调度问题(FJSP)变得非常难以解决生产管理。针对FJSP,开发了具有可变邻域搜索的离散多目标粒子群优化(PSO)和模拟退火(SA)算法,并具有三个标准:制造期,总工作量和关键机器工作量。首先,设计了离散的粒子群算法,然后通过SA算法对公共关键块上的两个邻域进行整合,进行变量邻域搜索,提高了搜索能力。最后,在多目标优化中发展了从外部档案中选择最佳个人和全球最佳个人的策略。通过在Matlab上进行的实验仿真,对Kacem实例,Brdata实例和BCdata实例进行测试,结果表明,改进的离散多目标PSO算法是一种基于三个准则优化FJSP的有前途和有效的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号