首页> 外文期刊>International journal of machine learning and cybernetics >Control the population of free viruses in nonlinear uncertain HIV system using Q-learning
【24h】

Control the population of free viruses in nonlinear uncertain HIV system using Q-learning

机译:利用Q学习控制非线性不确定HIV系统中自由病毒的数量。

获取原文
获取原文并翻译 | 示例

摘要

This paper surveys a new method to reduce the infected cells and free virus particles (virions) via a nonlinear HIV model. Three scenarios are considered for control performance evaluation. At first, the system and initial conditions are considered known completely. In the second case, the initial conditions are taken randomly. In the third scenario, in addition to uncertainty in initial condition, an additive noise is taken into account. The optimal control method is used to design an effective drug-schedule to reduce the number of infected cells and free virions with and without uncertainty. By using the Q-learning algorithm, which is the most applicable algorithm in reinforcement learning, the drug delivery rate is obtained off-line. Since Q-learning is a model-free algorithm, it is expected that the performance of the control in the presence of uncertainty does not change significantly. Simulation results confirm that the proposed control method has a good performance and high functionality in controlling the free virions for both certain and uncertain HIV models.
机译:本文探讨了一种通过非线性HIV模型减少感染细胞和游离病毒颗粒(病毒颗粒)的新方法。考虑三种情况进行控制性能评估。首先,系统和初始条件被认为是完全已知的。在第二种情况下,初始条件是随机获取的。在第三种情况下,除了初始条件不确定之外,还考虑了附加噪声。最佳控制方法用于设计有效的药物时间表,以减少或不确定情况下减少感染细胞和游离病毒粒子的数量。通过使用Q学习算法(这是强化学习中最适用的算法),可以离线获得药物输送率。由于Q学习是一种无模型算法,因此可以预期,在存在不确定性的情况下,控制性能不会发生明显变化。仿真结果证实,所提出的控制方法在控制某些和不确定的HIV模型中的游离病毒粒子方面具有良好的性能和较高的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号