首页> 外文期刊>International journal of knowledge engineering and soft data paradigms >On the distribution of the second-largest latent root for certain high dimensional Wishart matrices
【24h】

On the distribution of the second-largest latent root for certain high dimensional Wishart matrices

机译:关于某些高维Wishart矩阵的第二大潜在根的分布

获取原文
获取原文并翻译 | 示例

摘要

The distribution of the largest latent root was found by Johnstone (2001) for Wishart distributions W_(p-1)(n, ∑_(p-1)) with large dimension p - 1, when ∑_(p-1)= I_(p-1). In this paper, we study the distribution of the second-largest latent root of the covariance matrix when ∑_p = diag(σ, 1,..., 1) with σ » 1. When N = n-1 and p are large and satisfy N/(p - 1) → γ~* ≥ 1, we shall obtain the approximate distribution of the second-largest latent root, and verify the accuracy of the approximate distribution via a simulation study.
机译:当∑_(p-1)=时,Johnstone(2001)发现维纳斯分布W_(p-1)(n,∑_(p-1))的最大潜根分布。 I_(p-1)。在本文中,我们研究∑_p = diag(σ,1,...,1)且σ»1时协方差矩阵第二大潜根的分布。当N = n-1并且p大时并满足N /(p-1)→γ〜*≥1,我们将获得第二大潜在根的近似分布,并通过仿真研究验证该近似分布的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号