首页> 外文期刊>International journal of knowledge engineering and soft data paradigms >Improvement of the performance of optical handwritten digit recognition by incorporating cross-domain autoencoder-based image to image translation technique
【24h】

Improvement of the performance of optical handwritten digit recognition by incorporating cross-domain autoencoder-based image to image translation technique

机译:通过将基于跨域AutoEncoder的图像结合到图像转换技术来改进光学手写数字识别的性能

获取原文
获取原文并翻译 | 示例

摘要

The paper represents a novel approach that improves the performance of optical handwritten digit recognition incorporating image to image translation technique in a way - that it translates the input image of handwritten domain to some model domain so that the performance of any specified classier improves. In this paper, we have done image to image translation using two pretrained autoencoders, one of them is an autoencoder of a handwritten domain and other is an autoencoder of a model domain. We have bonded together the encoder of handwritten domain and the decoder of model domain and a neural network for feature translation in between in order to train the whole neural network for the translation of an image from handwritten domain to the image of a model domain. Also, an analysis has been shown regarding how well our method improves the performance of optical handwritten digit recognition for both Bengali and English digits.
机译:本文代表了一种新的方法,它以一种方式提高了光学手写数字识别将图像的性能的性能以一种方式转换为图像转换技术 - 它将手写域的输入图像转换为某些模型域,以便任何指定的类别的性能提高。在本文中,我们使用两个佩带的autoEncoders进行了图像转换的图像,其中一个是手写域的autoencoder,另一个是模型域的autoencoder。我们将手写域的编码器和模型域的解码器和神经网络的编码器粘合在一起,以便于之间的特征翻译,以便训练从手写域转换到模型域的图像的整个神经网络。此外,有关我们的方法如何提高孟加拉语和英语数字的方法提高光学手写数字识别性能的分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号