...
首页> 外文期刊>International Journal of Heat and Mass Transfer >Combined local microchannel-scale CFD modeling and global chip scale network modeling for electronics cooling design
【24h】

Combined local microchannel-scale CFD modeling and global chip scale network modeling for electronics cooling design

机译:结合了局部微通道规模CFD建模和全局芯片规模网络建模的电子散热设计

获取原文
获取原文并翻译 | 示例
           

摘要

MicroChannel cold plates enjoy increasing interest in liquid cooling of high-performance computing systems. Fast and reliable design tools are required to comply with the fluid mechanics and thermal specifications of such complex devices. In this paper, a methodology accounting for the local as well as the device length scales of the involved physics is introduced and applied to determine the performance of a microchannel cooler. A unit cell of the heat transfer microchannel system is modeled and implemented in conjugate CFD simulations. The fluidic and thermal characteristics of three different cold plate mesh designs are evaluated. Periodic boundary conditions and an iteration procedure are used to reach developed flow and thermal conditions. Subsequently, two network-like models are introduced to predict the overall pressure drop and thermal resistance of the device based on the results of the unit cell evaluations. Finally, the performance figures from the model predictions are compared to experimental data. We illustrate the cooling potential for different channel mesh porosities and compare it to the required pumping power. The agreement between simulations and experiments is within 2%. It was found that for a typical flow rate of 250 ml/min, the thermal resistance of the finest microchannel network examined is reduced by 7% and the heat transfer coefficient is increased by 25% compared to the coarsest channel network. On the other hand, an increase in pressure drop by 100% in the case of densest channel network was found.
机译:MicroChannel冷板在高性能计算系统的液体冷却方面越来越受到关注。需要快速而可靠的设计工具来符合此类复杂设备的流体力学和热学规范。在本文中,介绍了一种方法,该方法考虑了所涉及物理的局部以及设备长度尺度,并被用于确定微通道冷却器的性能。在共轭CFD模拟中对传热微通道系统的晶胞进行建模和实现。评估了三种不同的冷板网格设计的流体和热特性。使用周期性边界条件和迭代过程来达到发达的流动和热条件。随后,引入了两个类似网络的模型,以基于单元电池评估的结果来预测设备的总体压降和热阻。最后,将来自模型预测的性能数据与实验数据进行比较。我们说明了不同通道网格孔隙率的冷却潜力,并将其与所需的泵送功率进行了比较。模拟与实验之间的一致性在2%以内。已发现,对于典型的250 ml / min流速,与最粗糙的通道网络相比,所检查的最精细的微通道网络的热阻降低了7%,传热系数提高了25%。另一方面,在最密集的通道网络中,发现压降增加了100%。

著录项

  • 来源
    《International Journal of Heat and Mass Transfer》 |2010年第6期|1004-1014|共11页
  • 作者单位

    IBM Research GmbH, Zurich Research Laboratory, 8803 Ruschlikon, Switzerland Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering ETH Zurich, 8092 Zurich, Switzerland;

    IBM Research GmbH, Zurich Research Laboratory, 8803 Ruschlikon, Switzerland;

    IBM Research GmbH, Zurich Research Laboratory, 8803 Ruschlikon, Switzerland;

    Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering ETH Zurich, 8092 Zurich, Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Microchannel; liquid cooling; heat transfer in electronics;

    机译:微通道;液体冷却电子学中的热传递;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号