首页> 外文期刊>International Journal of Control, Automation and Systems >Identification of Uncertain Nonlinear MIMO Spacecraft Systems Using Coactive Neuro Fuzzy Inference System (CANFIS)
【24h】

Identification of Uncertain Nonlinear MIMO Spacecraft Systems Using Coactive Neuro Fuzzy Inference System (CANFIS)

机译:使用主动神经模糊推理系统(CANFIS)识别不确定的非线性MIMO航天器系统

获取原文
获取原文并翻译 | 示例

摘要

This paper attempts to present a neural inverse control design framework for a class of nonlinear multiple-input multiple-output (MIMO) system with uncertainties. This research effort is motivated by the following considerations: (a) An appropriate reference model that accurately represents the desired system dynamics is usually assumed to exist and to be available, and yet in reality this is not the case often times; (b) In real world applications, there are many cases where controls are constrained within a physically allowable range, which presents another layer of difficulties to directly apply the reference model based inverse control; (c) It is difficult to consider optimal control even for the reference model as in general the analytic solution to the optimal control problem is not available. The simulation study has been focused on the identification of Multiple Input, Single Output (MISO) non-linear complex systems. This paper concentrates on the identification of Multiple Input Multiple Output (MIMO) system by means of a hybrid-learning rule, which combines the back propagation and the Least Mean Squared (LMS) to identify parameters. We construct a neuro fuzzy model structure, and generate the membership function from the measured data. The MIMO system model is represented as a set of coupled input-output MISO models of the Takagi-Sugeno type. Neuro fuzzy model of the system structure is incorporated easily in the structure of the model. The simulation is used to implement a MIMO spacecraft system using Matlab for moment_yaw, moment_pitch, and momentroll as input, and velocity in inertial axis as output. Experimental results are given to show the effectiveness of this Adaptive Neuro Fuzzy System (ANFIS) model.
机译:本文试图为一类具有不确定性的非线性多输入多输出(MIMO)系统提出一种神经逆控制设计框架。这项研究工作是出于以下考虑:(a)通常假定存在一个可以正确表示所需系统动力学的适当参考模型,并且该参考模型是可用的,但实际上并非经常如此; (b)在现实世界的应用中,在许多情况下,控制被限制在物理允许的范围内,这给直接应用基于参考模型的反向控制带来了另一层困难; (c)即使对于参考模型,也很难考虑最优控制,因为通常没有针对最优控制问题的解析解。仿真研究的重点是识别多输入单输出(MISO)非线性复杂系统。本文着重于通过混合学习规则识别多输入多输出(MIMO)系统,该方法结合了反向传播和最小均方(LMS)来识别参数。我们构建了神经模糊模型结构,并从测量数据生成隶属函数。 MIMO系统模型表示为一组Takagi-Sugeno类型的耦合输入输出MISO模型。系统结构的神经模糊模型很容易纳入模型的结构中。该仿真用于实现使用Matlab的MIMO航天器系统,该系统的矩矩(yaw_yaw),矩矩(moment_pitch)和矩量(momentroll)作为输入,而惯性轴上的速度作为输出。实验结果表明该自适应神经模糊系统(ANFIS)模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号