首页> 外文期刊>International Journal of Computer Systems Science & Engineering >Approximation algorithms for inner-node weighted minimum spanning trees
【24h】

Approximation algorithms for inner-node weighted minimum spanning trees

机译:内节点加权最小生成树的近似算法

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the Inner-node Weighted Minimum Spanning Tree Problem (IWMST), which asks lor a spanning tree in a graph G = (V, E) (|V|= n,|E|=m) with the minimum total cost for its edges and non-leal nodes. This problem is NP lard because it contains the connected dominating set problem (CDS) as a special case. Since CDS cannot be approximated with a factor of (1 - ε)H(Δ) (Δ is the maximum degree) unless NP¢DTIME|n~(O(log log n))| [10], we can only expect a poly-logarithmic approximation algorithm for the IWMST problem.rnTo tackle this problem, we first present a general framework for developing poly-logarithmic approximation algorithms. Our framework aims to find a k/k-1approximate Algorithm (k ∈ N and k≥2) for the IWMST problem. Based on this framework, we further design two polynomial time approximation algorithms. The first one can find a 2ln n-approximate solution in O(mn log n) time, while the second one can compute a 1.5ln n-approximate solution in O(n~2Δ~6) time (Δ is the maximum degree in G). We have also studied the relationships between the IWMST problem and several other similar problems.
机译:本文解决了内部节点加权最小生成树问题(IWMST),该问题要求图G =(V,E)(| V | = n,| E | = m)中的生成树且总成本最小其边缘和非忠实节点。此问题是NP猪油,因为它包含特殊情况下的连接控制集问题(CDS)。除非NP ¢ DTIME | n〜(O(log log n))|,否则CDS不能以(1-ε)H(Δ)的因数近似(Δ是最大程度)。 [10],我们只能期望一个针对IWMST问题的对数近似算法。为解决这个问题,我们首先提出一个开发对数近似算法的通用框架。我们的框架旨在为IWMST问题找到k / k-1近似算法(k∈N和k≥2)。在此框架的基础上,我们进一步设计了两种多项式时间近似算法。第一个可以在O(mn log n)的时间内找到一个2ln n-近似解,而第二个可以在O(n〜2Δ〜6)的时间内计算一个1.5ln n-近似解(Δ是在G)。我们还研究了IWMST问题和其他几个类似问题之间的关系。

著录项

  • 来源
  • 作者单位

    Graduate School of Information Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Ishikawa, Japan New Generation Network Research Center, National Institute ot Information and Communications Technology, 4-2-1 Nukui-Kitamachi, Koganei, Tokyo, Japan;

    Graduate School of Information Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Ishikawa, Japan;

    Graduate School of Information Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Ishikawa, Japan Department of Computer Science, Georgia State University, Atlanta, GA, US;

    Department of Computer Science, St. Francis Xavier University, Antigonish, B2G 2W5, Canada;

    Department of Computer Science and Engineering, Fudan University, Shanghai, P.R.China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    approximation algorithms; inner-node weighted minimum spanning trees;

    机译:近似算法;内节点加权最小生成树;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号