首页> 外文会议>International conference on Integration of AI and OR Techniques in Constraint Programming >Counting Weighted Spanning Trees to Solve Constrained Minimum Spanning Tree Problems
【24h】

Counting Weighted Spanning Trees to Solve Constrained Minimum Spanning Tree Problems

机译:计算加权生成树以解决约束最小生成树问题

获取原文

摘要

Building on previous work about counting the number of spanning trees of an unweighted graph, we consider the case of edge-weighted graphs. We present a generalization of the former result to compute in pseudo-polynomial time the exact number of spanning trees of any given weight, and in particular the number of minimum spanning trees. We derive two ways to compute solution densities, one of them exhibiting a polynomial time complexity. These solution densities of individual edges of the graph can be used to sample weighted spanning trees uniformly at random and, in the context of constraint programming, to achieve domain consistency on the binary edge variables and, more importantly, to guide search through counting-based branching heuristics. We exemplify our contribution using constrained minimum spanning tree problems.
机译:在先前关于计算未加权图的生成树数量的工作的基础上,我们考虑边缘加权图的情况。我们对前一个结果进行了概括,以便在伪多项式时间内计算任意给定权重的生成树的确切数量,尤其是最小生成树的数量。我们导出了两种计算解密度的方法,其中一种表现出多项式时间复杂度。图的各个边缘的这些解决方案密度可用于随机地均匀采样加权生成树,并且在约束编程的情况下,可实现二进制边缘变量的域一致性,更重要的是,可通过基于计数的搜索来指导搜索分支启发法。我们使用约束最小生成树问题来举例说明我们的贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号