首页> 外文期刊>Computers & operations research >Variable neighborhood search for the cost constrained minimum label spanning tree and label constrained minimum spanning tree problems
【24h】

Variable neighborhood search for the cost constrained minimum label spanning tree and label constrained minimum spanning tree problems

机译:变量邻域搜索,用于成本受限的最小标签生成树和标签受限的最小生成树问题

获取原文
获取原文并翻译 | 示例

摘要

Given an undirected graph whose edges are labeled or colored, edge weights indicating the cost of an edge, and a positive budget B, the goal of the cost constrained minimum label spanning tree (CCMLST) problem is to find a spanning tree that uses the minimum number of labels while ensuring its cost does not exceed B. The label constrained minimum spanning tree (LCMST) problem is closely related to the CCMLST problem. Here, we are given a threshold K on the number of labels. The goal is to find a minimum weight spanning tree that uses at most K distinct labels. Both of these problems are motivated from the design of telecommunication networks and are known to be NP-complete [15].rnIn this paper, we present a variable neighborhood search (VNS) algorithm for the CCMLST problem. The VNS algorithm uses neighborhoods defined on the labels. We also adapt the VNS algorithm to the LCMST problem. We then test the VNS algorithm on existing data sets as well as a large-scale dataset based on TSPLIB [12] instances ranging in size from 500 to 1000 nodes. For the LCMST problem, we compare the VNS procedure to a genetic algorithm (GA) and two local search procedures suggested in [15]. For the CCMLST problem, the procedures suggested in [15] can be applied by means of a binary search procedure. Consequently, we compared our VNS algorithm to the GA and two local search procedures suggested in [15]. The overall results demonstrate that the proposed VNS algorithm is of high quality and computes solutions rapidly. On our test datasets, it obtains the optimal solution in all instances for which the optimal solution is known. Further, it significantly outperforms the GA and two local search procedures described in [15].
机译:给定一个无向图,其边缘被标记或着色,边缘权重指示边缘的成本,并且预算为正B,成本受限的最小标签生成树(CCMLST)问题的目标是找到使用最小生成树的生成树。标签数目,同时确保其成本不超过B。标签约束最小生成树(LCMST)问题与CCMLST问题密切相关。在这里,给我们标签数量的阈值K。目标是找到最多使用K个不同标签的最小权重生成树。这两个问题均来自电信网络的设计,并且被认为是NP完全的[15]。在本文中,我们针对CCMLST问题提出了一种可变邻域搜索(VNS)算法。 VNS算法使用标签上定义的邻域。我们还使VNS算法适应LCMST问题。然后,我们在现有数据集以及基于TSPLIB [12]实例的大规模数据集上测试VNS算法,其大小从500到1000个节点不等。对于LCMST问题,我们将VNS过程与遗传算法(GA)和在[15]中建议的两个本地搜索过程进行了比较。对于CCMLST问题,可以通过二进制搜索过程来应用[15]中建议的过程。因此,我们将VNS算法与GA以及[15]中建议的两种本地搜索程序进行了比较。整体结果表明,所提出的VNS算法具有较高的质量,并且可以快速计算出解决方案。在我们的测试数据集上,它会在已知最佳解的所有情况下获得最佳解。此外,它明显优于[15]中描述的GA和两个本地搜索程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号