首页> 外文期刊>International journal of computational vision and robotics >Majority voting-based hybrid feature selection in machine learning paradigm for epilepsy detection using EEG
【24h】

Majority voting-based hybrid feature selection in machine learning paradigm for epilepsy detection using EEG

机译:基于大多数投票的混合功能选择,用于使用EEG进行癫痫检测的机器学习范式

获取原文
获取原文并翻译 | 示例

摘要

This article presents a combination of statistical and discrete wavelet transform (DWT)-based features for the identification of epileptic seizures in electroencephalogram (EEG) signals. A total of 150 quantitative features are extracted from EEG signals. A multi-criteria hybrid feature selection is proposed by combining six feature ranking methods using the majority voting technique to identify the most relevant EEG markers. Kernel-based support vector machine is used to evaluate the proposed approach along with a hybrid classifier namely support vector neural network (SVNN) which is a combination of support vector machine (SVM) and artificial neural network (ANN). For performance evaluation of the proposed method, a benchmarked database is used. A comparative study of various types of SVM and SVNN with ten-fold and hold-out cross-validation techniques is conducted. The highest classification accuracy (CA) of 98.18% and 100% sensitivity is achieved with a fine Gaussian SVM classifier with hold-out data division protocol.
机译:本文介绍了统计和离散小波变换(DWT)的组合,用于识别脑电图(EEG)信号中的癫痫发作。从EEG信号中提取了总共150个定量特征。通过将六种特征排名方法组合使用多数投票技术来识别最相关的脑电图标记来提出多标准混合特征选择。基于内核的支持向量机用于评估所提出的方法以及混合分类器,即支持矢量神经网络(SVNN),其是支持向量机(SVM)和人工神经网络(ANN)的组合。对于所提出的方法的性能评估,使用基准数据库。进行了具有十倍和举起交叉验证技术的各种类型的SVM和SVNN的对比研究。使用具有扑出数据划分协议的精细高斯SVM分类器实现了98.18%和100%灵敏度的最高分类精度(CA)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号