首页> 外文OA文献 >Intelligent Detection of False Information in Arabic Tweets Utilizing Hybrid Harris Hawks Based Feature Selection and Machine Learning Models
【2h】

Intelligent Detection of False Information in Arabic Tweets Utilizing Hybrid Harris Hawks Based Feature Selection and Machine Learning Models

机译:智能检测阿拉伯语推文中的虚假信息利用基于Hybrid Harris Hawks的特征选择和机器学习模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fake or false information on social media platforms is a significant challenge that leads to deliberately misleading users due to the inclusion of rumors, propaganda, or deceptive information about a person, organization, or service. Twitter is one of the most widely used social media platforms, especially in the Arab region, where the number of users is steadily increasing, accompanied by an increase in the rate of fake news. This drew the attention of researchers to provide a safe online environment free of misleading information. This paper aims to propose a smart classification model for the early detection of fake news in Arabic tweets utilizing Natural Language Processing (NLP) techniques, Machine Learning (ML) models, and Harris Hawks Optimizer (HHO) as a wrapper-based feature selection approach. Arabic Twitter corpus composed of 1862 previously annotated tweets was utilized by this research to assess the efficiency of the proposed model. The Bag of Words (BoW) model is utilized using different term-weighting schemes for feature extraction. Eight well-known learning algorithms are investigated with varying combinations of features, including user-profile, content-based, and words-features. Reported results showed that the Logistic Regression (LR) with Term Frequency-Inverse Document Frequency (TF-IDF) model scores the best rank. Moreover, feature selection based on the binary HHO algorithm plays a vital role in reducing dimensionality, thereby enhancing the learning model’s performance for fake news detection. Interestingly, the proposed BHHO-LR model can yield a better enhancement of 5% compared with previous works on the same dataset.
机译:关于社交媒体平台的虚假或虚假信息是一项重大挑战,导致故意误导用户因包含有关人员,组织或服务的谣言,宣传或欺骗性信息而导致用户。 Twitter是最广泛使用的社交媒体平台之一,特别是在阿拉伯地区,用户数量稳步增加,伴随着假新闻的速度。这提出了研究人员的注意,提供安全的在线环境,没有误导信息。本文旨在提出利用自然语言处理(NLP)技术,机器学习(ML)型号,以及哈里斯鹰优化器(HHO)作为基于包装器的特征选择方法的阿拉伯语推文早期检测的智能分类模型。本研究利用了由1862年以前注释的推文组成的阿拉伯语Twitter语料库,以评估所提出的模型的效率。使用不同的术语加权方案用于特征提取的不同术语加权方案使用单词(弓)模型。通过不同的特征组合来研究八个众所周知的学习算法,包括用户配置文件,基于内容和单词特征。据报道的结果表明,具有术语频率反转文档频率(TF-IDF)模型的逻辑回归(LR)得分最佳等级。此外,基于二元HHO算法的特征选择在减少维度方面起着至关重要的作用,从而提高了学习模型的假新闻检测的性能。有趣的是,与上一个数据集相比,建议的BHO-LR模型可以提高5%的增强5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号