首页> 外文期刊>International Journal of Automation and Computing >Velocity Calculation by Automatic Camera Calibration Based on Homogenous Fog Weather Condition
【24h】

Velocity Calculation by Automatic Camera Calibration Based on Homogenous Fog Weather Condition

机译:基于均匀雾天气条件的摄像机自动标定速度计算

获取原文
获取原文并翻译 | 示例

摘要

A novel algorithm for vehicle average velocity detection through automatic and dynamic camera calibration based on dark channel in homogenous fog weather condition is presented in this paper. Camera fixed in the middle of the road should be calibrated in homogenous fog weather condition, and can be used in any weather condition. Unlike other researches in velocity calculation area, our traffic model only includes road plane and vehicles in motion. Painted lines in scene image are neglected because sometimes there are no traffic lanes, especially in un-structured traffic scene. Once calibrated, scene distance will be got and can be used to calculate vehicles average velocity. Three major steps are included in our algorithm. Firstly, current video frame is recognized to discriminate current weather condition based on area search method (ASM). If it is homogenous fog, average pixel value from top to bottom in the selected area will change in the form of edge spread function (ESF). Secondly, traffic road surface plane will be found by generating activity map created by calculating the expected value of the absolute intensity difference between two adjacent frames. Finally, scene transmission image is got by dark channel prior theory, camera?s intrinsic and extrinsic parameters are calculated based on the parameter calibration formula deduced from monocular model and scene transmission image. In this step, several key points with particular transmission value for generating necessary calculation equations on road surface are selected to calibrate the camera. Vehicles? pixel coordinates are transformed to camera coordinates. Distance between vehicles and the camera will be calculated, and then average velocity for each vehicle is got. At the end of this paper, calibration results and vehicles velocity data for nine vehicles in different weather conditions are given. Comparison with other algorithms verifies the effectiveness of our algorithm
机译:提出了一种在均匀雾天气条件下基于暗通道的自动和动态摄像机标定检测车辆平均速度的新算法。固定在道路中间的摄像机应在均匀的雾天条件下进行校准,并且可以在任何天气条件下使用。与速度计算领域的其他研究不同,我们的交通模型仅包含道路平面和行驶中的车辆。忽略场景图像中的画线,因为有时没有行车线,尤其是在非结构化的交通场景中。校准后,将获得场景距离,并可用于计算车辆平均速度。我们的算法包括三个主要步骤。首先,基于区域搜索方法(ASM)识别当前视频帧以区分当前天气状况。如果是均匀雾,则所选区域中从上到下的平均像素值将以边缘扩散函数(ESF)的形式变化。其次,通过生成活动图来找到交通道路平面,该活动图是通过计算两个相邻帧之间的绝对强度差的期望值而创建的。最后,利用暗通道先验理论得到场景透射图像,根据单目模型和场景透射图像推导的参数标定公式,计算出相机的内在和外在参数。在此步骤中,选择几个具有特定透射率值的关键点,以在路面上生成必要的计算方程式以校准摄像机。汽车?像素坐标转换为相机坐标。将计算车辆与摄像机之间的距离,然后获得每个车辆的平均速度。最后,给出了九种不同天气条件下车辆的标定结果和车速数据。与其他算法的比较验证了我们算法的有效性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号