首页> 外文期刊>International Journal of Applied Mathematics and Computer Science >GENERALIZED KERNEL REGRESSION ESTIMATE FOR THE IDENTIFICATION OF HAMMERSTEIN SYSTEMS
【24h】

GENERALIZED KERNEL REGRESSION ESTIMATE FOR THE IDENTIFICATION OF HAMMERSTEIN SYSTEMS

机译:HAMMERSTEIN系统识别的广义核回归估计

获取原文
获取原文并翻译 | 示例

摘要

A modified version of the classical kernel nonparametric identification algorithm for nonlinearity recovering in a Hammer-stein system under the existence of random noise is proposed. The assumptions imposed on the unknown characteristic are weak. The generalized kernel method proposed in the paper provides more accurate results in comparison with the classical kernel nonparametric estimate, regardless of the number of measurements. The convergence in probability of the proposed estimate to the unknown characteristic is proved and the question of the convergence rate is discussed. Illustrative simulation examples are included.
机译:提出了一种经典的随机核非参数辨识算法的改进版本,该算法用于在随机噪声存在下的Hammer-stein系统中进行非线性恢复。对未知特征施加的假设很弱。与经典的核非参数估计相比,本文提出的广义核方法提供了更准确的结果,而与测量次数无关。证明了所提估计对未知特征的收敛性,并讨论了收敛速度的问题。包括说明性的仿真示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号