首页> 外文会议>1993 International Joint Conference on Neural Networks, 1993. IJCNN '93-Nagoya, 1993 >On identification of nonstationary Hammerstein systems by theFourier series regression estimate
【24h】

On identification of nonstationary Hammerstein systems by theFourier series regression estimate

机译:用Fourier级数回归估计确定非平稳Hammerstein系统

获取原文

摘要

A study is made of the identification of a single-input,single-output (SISO) discrete Hammerstein system. Such a system consistsof a nonlinear, memoryless subsystem followed by a dynamic, linearsubsystem. The authors identify the parameters of the dynamic, linearsubsystem by the correlation method. The main results concern theidentification of the nonlinear, memoryless subsystem. The authorsimpose no conditions on the functional form of the nonlinear subsystem,recovering the nonlinearity using the Fourier series regression estimateand an input process with fixed initial conditions. They prove thedensity-free pointwise convergence of the estimate, that is, that thealgorithm converges for all input densities. The rates of pointwiseconvergence are obtained for smooth input densities and fornonlinearities of the Lipschitz type
机译:对单输入单输出(SISO)离散Hammerstein系统的识别进行了研究。这样的系统由非线性,无记忆子系统和动态线性子系统组成。作者通过相关方法确定了动态线性子系统的参数。主要结果涉及非线性无记忆子系统的识别。作者在非线性子系统的功能形式上不设任何条件,使用傅立叶级数回归估计和具有固定初始条件的输入过程来恢复非线性。他们证明了估计的无密度逐点收敛,也就是说,算法对所有输入密度都收敛了。对于Lipschitz类型的平滑输入密度和非线性,可获得逐点收敛的速率

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号