首页> 外文期刊>International Journal of Applied Mathematics and Computer Science >LOCAL STABILITY CONDITIONS FOR DISCRETE-TIME CASCADE LOCALLY RECURRENT NEURAL NETWORKS
【24h】

LOCAL STABILITY CONDITIONS FOR DISCRETE-TIME CASCADE LOCALLY RECURRENT NEURAL NETWORKS

机译:离散级联局部递归神经网络的局部稳定性条件

获取原文
获取原文并翻译 | 示例

摘要

The paper deals with a specific kind of discrete-time recurrent neural network designed with dynamic neuron models. Dynamics are reproduced within each single neuron, hence the network considered is a locally recurrent globally feedforward. A crucial problem with neural networks of the dynamic type is stability as well as stabilization in learning problems. The paper formulates local stability conditions for the analysed class of neural networks using Lyapunov's first method. Moreover, a stabilization problem is defined and solved as a constrained optimization task. In order to tackle this problem, a gradient projection method is adopted. The efficiency and usefulness of the proposed approach are justified by using a number of experiments.
机译:本文研究了一种用动态神经元模型设计的特定类型的离散时间递归神经网络。动态在每个单个神经元内复制,因此所考虑的网络是局部递归的全局前馈。动态类型神经网络的一个关键问题是学习问题的稳定性和稳定性。本文使用李雅普诺夫(Lyapunov)的第一种方法为所分析的神经网络类制定了局部稳定性条件。此外,将稳定问题定义和解决为约束优化任务。为了解决这个问题,采用了梯度投影法。通过大量实验证明了该方法的有效性和实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号