首页> 外文期刊>International Journal of Applied Mathematics and Computer Science >NOVEL OPTIMAL RECURSIVE FILTER FOR STATE AND FAULT ESTIMATION OF LINEAR STOCHASTIC SYSTEMS WITH UNKNOWN DISTURBANCES
【24h】

NOVEL OPTIMAL RECURSIVE FILTER FOR STATE AND FAULT ESTIMATION OF LINEAR STOCHASTIC SYSTEMS WITH UNKNOWN DISTURBANCES

机译:未知扰动线性随机系统状态和故障估计的新型最优递推滤波器

获取原文
获取原文并翻译 | 示例

摘要

This paper studies recursive optimal filtering as well as robust fault and state estimation for linear stochastic systems with unknown disturbances. It proposes a new recursive optimal filter structure with transformation of the original system. This transformation is based on the singular value decomposition of the direct feedthrough matrix distribution of the fault which is assumed to be of arbitrary rank. The resulting filter is optimal in the sense of the unbiased minimum-variance criteria. Two numerical examples are given in order to illustrate the proposed method, in particular to solve the estimation of the simultaneous actuator and sensor fault problem and to make a comparison with the existing literature results.
机译:本文研究了具有未知扰动的线性随机系统的递归最优滤波以及鲁棒故障和状态估计。通过对原始系统的改造,提出了一种新的递归最优滤波器结构。该变换基于故障的直接馈通矩阵分布的奇异值分解,该分布假定为任意等级。在无偏最小方差标准的意义上,所得滤波器是最佳的。给出了两个数值例子,以说明所提出的方法,特别是解决对同时执行器和传感器故障问题的估计,并与现有文献结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号