首页> 外文期刊>International Journal of Applied Mathematics and Computer Science >NEURAL NETWORK BASED FEEDBACK LINEARIZATION CONTROL OF A SERVO-HYDRAULIC VEHICLE SUSPENSION SYSTEM
【24h】

NEURAL NETWORK BASED FEEDBACK LINEARIZATION CONTROL OF A SERVO-HYDRAULIC VEHICLE SUSPENSION SYSTEM

机译:液压悬挂系统的基于神经网络的反馈线性化控制

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the design of a neural network based feedback linearization (NNFBL) controller for a two degree-of-freedom (DOF), quarter-car, servo-hydraulic vehicle suspension system. The main objective of the direct adaptive NNFBL controller is to improve the system's ride comfort and handling quality. A feedforward, multi-layer perceptron (MLP) neural network (NN) model that is well suited for control by discrete input-output linearization (NNIOL) is developed using input-output data sets obtained from mathematical model simulation. The NN model is trained using the Levenberg-Marquardt optimization algorithm. The proposed controller is compared with a constant-gain PID controller (based on the Ziegler-Nichols tuning method) during suspension travel setpoint tracking in the presence of deterministic road disturbance. Simulation results demonstrate the superior performance of the proposed direct adaptive NNFBL controller over the generic PID controller in rejecting the deterministic road disturbance. This superior performance is achieved at a much lower control cost within the stipulated constraints.
机译:本文提出了一种基于神经网络的反馈线性化(NNFBL)控制器的设计,该控制器用于两自由度(DOF),四分之一车,伺服液压车辆悬架系统。直接自适应NNFBL控制器的主要目的是提高系统的乘坐舒适性和操纵质量。使用从数学模型仿真获得的输入输出数据集,开发了非常适合通过离散输入输出线性化(NNIOL)控制的前馈多层感知器(MLP)神经网络(NN)模型。使用Levenberg-Marquardt优化算法训练NN模型。在存在确定性道路扰动的情况下,在悬架行程设定点跟踪期间,将所提出的控制器与恒增益PID控制器(基于Ziegler-Nichols调整方法)进行比较。仿真结果表明,所提出的直接自适应NNFBL控制器在拒绝确定性道路干扰方面优于通用PID控制器。在规定的约束范围内,以低得多的控制成本获得了出色的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号