首页> 外文期刊>Intelligent Transport Systems, IET >Empowering vehicle tracking in a cluttered environment with adaptive cellular automata suitable to intelligent transportation systems
【24h】

Empowering vehicle tracking in a cluttered environment with adaptive cellular automata suitable to intelligent transportation systems

机译:通过适用于智能交通系统的自适应蜂窝自动机在混乱的环境中增强车辆跟踪能力

获取原文
获取原文并翻译 | 示例

摘要

Detecting and tracking moving vehicles in actual traffic scenes is an embryonic investigation field for smart transportation systems. This study presents the computational paradigm of fuzzy cellular automata (FCA) to manage the sensitive to environmental fluctuations limitation associated with the background subtraction methods for dynamic vehicle tracking. The suggested model extends FCA that is formed with rules supporting least sensitive fuzzy ‘exclusive or’ operation as next case logic to control levels of ambiguity in rule similarly functions. At each step, the refresh of background in frame difference proposals is established according to the number of active cells and fuzzy mapping function; so moving vehicles that their grey level is totally similar to the background grey level are easily identified. Furthermore, an occlusion handling routine based on visual measurement is engaged in discovering the classes of the vehicle occlusions and fragmenting the vehicle from each occlusive class. The empirical outcomes confirm that the suggested method is more accurate and powerful than conventional techniques for real-time vehicle tracking.
机译:在实际交通场景中检测和跟踪行驶中的车辆是智能交通系统的新兴研究领域。这项研究提出了模糊元胞自动机(FCA)的计算范例,以管理对环境波动限制的敏感度,该限制与动态车辆跟踪的背景扣除方法相关。所建议的模型扩展了FCA,该FCA由支持最小敏感模糊“排他或”运算的规则构成,作为下一种情况的逻辑,以控制类似功能的规则中的歧义级别。在每一步骤中,根据活动单元的数量和模糊映射功能建立帧差异建议中的背景刷新。因此,很容易识别出其灰度与背景灰度完全相似的运动车辆。此外,基于视觉测量的遮挡处理例程被用于发现车辆遮挡的类别并从每个遮挡类别中分割车辆。实验结果证实,所建议的方法比传统的实时车辆跟踪技术更准确,功能更强大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号