首页> 外文期刊>Intelligent automation and soft computing >SOFT COMPUTATION USING ARTIFICIAL NEURAL ESTIMATION AND LINEAR MATRIX INEQUALITY TRANSMUTATION FOR CONTROLLING SINGULARLY-PERTURBED CLOSED TIMEINDEPENDENT QUANTUM COMPUTATION SYSTEMS,PART B: HIERARCHICAL REGULATION IMPLEMENTATION
【24h】

SOFT COMPUTATION USING ARTIFICIAL NEURAL ESTIMATION AND LINEAR MATRIX INEQUALITY TRANSMUTATION FOR CONTROLLING SINGULARLY-PERTURBED CLOSED TIMEINDEPENDENT QUANTUM COMPUTATION SYSTEMS,PART B: HIERARCHICAL REGULATION IMPLEMENTATION

机译:使用人工神经估计和线性矩阵不等式变换的软计算,用于控制奇摄动的封闭时间独立量子计算系统,部分B:分层调节实现

获取原文
获取原文并翻译 | 示例

摘要

A new method of intelligent control for time-independent closed quantum computation systems is introduced in this second part of the paper. The goal is to apply a new implementation of intelligent hierarchical control method within quantum computing systems where the obtained results are satisfying for the robust control of time-independent quantum computations. The new method utilizes supervised recurrent artificial neural networks (ANN) to estimate parameters of the [ A ] transformed system matrix. After system matrix estimation is performed, linear matrix inequality (LMI) is used to determine the permutation matrix [P] so that a complete system transmutation {[ B ], [ C], [ D]} is accomplished. The transformed system model is then reduced using singular perturbation and state feedback control is implemented for system performance enhancement. In quantum computing and mechanics, a closed system is an isolated system that can't exchange energy or matter with its surroundings and doesn't interact with other quantum systems. In contrast to open quantum systems, closed quantum systems obey the unitary evolution and thus are information lossless. The experimental simulations were implemented upon the time-independent closed quantum computing system using the important quantum case of a particle in a finite-walled box for an m-valued quantum computing in which the resulting distinct energy states are used as the orthonormal basis states. Although several other diverse conventional control methodologies and schemes can exist for the purpose of controlling computational circuits and systems, the introduced intelligent hierarchical control method simplifies the order of the ANN-estimated LMI-transformed eigenvalue-preserved quantum model, and thereafter synthesizes - as demonstrated - simpler controllers for the utilized closed time-independent quantum computation devices, circuits and systems, that achieve the desired enhanced quantum system performance.
机译:本文的第二部分介绍了一种与时间无关的封闭量子计算系统的智能控制新方法。目标是在量子计算系统中应用智能分层控制方法的新实现方式,其中获得的结果满足对与时间无关的量子计算的鲁棒控制。该新方法利用监督递归人工神经网络(ANN)估计[A]变换后的系统矩阵的参数。在执行系统矩阵估计之后,线性矩阵不等式(LMI)用于确定置换矩阵[P],从而完成完整的系统置换{[B],[C],[D]}。然后,使用奇异摄动来简化变换后的系统模型,并实施状态反馈控制以增强系统性能。在量子计算和力学中,封闭系统是一个孤立的系统,不能与周围的环境交换能量或物质,并且不与其他量子系统进行交互。与开放量子系统相反,封闭量子系统服从单一进化,因此信息无损失。实验仿真是在时间独立的封闭量子计算系统上进行的,该系统使用有限壁箱中粒子的重要量子情况进行m值量子计算,其中将得到的不同能态用作正交基态。尽管可以存在几种其他多样的常规控制方法和方案来控制计算电路和系统,但是引入的智能分层控制方法简化了ANN估计的LMI变换特征值保留量子模型的顺序,然后进行了合成-如所示-用于所使用的封闭的,与时间无关的量子计算设备,电路和系统的更简单的控制器,其实现了期望的增强的量子系统性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号