首页> 外文期刊>Intelligent automation and soft computing >PGCA-Net: Progressively Aggregating Hierarchical Features with the Pyramid Guided Channel Attention for Saliency Detection
【24h】

PGCA-Net: Progressively Aggregating Hierarchical Features with the Pyramid Guided Channel Attention for Saliency Detection

机译:PGCA-NET:逐步聚合分层特征,具有金字塔引导渠道注意力,可加于显着性检测

获取原文
获取原文并翻译 | 示例

摘要

The Salient object detection aims to segment out the most visually distinctive objects in an image, which is a challenging task in computer vision. In this paper, we present the PGCA-Net equipped with the pyramid guided channel attention fusion block (PGCAFB) for the saliency detection task. Given an input image, the hierarchical features are extracted using a deep convolutional neural network (DCNN), then starting from the highest-level semantic features, we stage-by-stage restore the spatial saliency details by aggregating the lower-level detailed features. Since for the weak discriminative ability of the shallow detailed features, directly introducing them to the semantic features will only lead to sub-optimal results. Thus, we take a novel pyramid channel attention mechanism to attend to the useful detailed shallow feature channels before aggregation. The experimental results show that our proposed method outperforms its competitors on 5 benchmark testing sets.
机译:突出的对象检测旨在将最具视觉上独特的物体分段出现在图像中,这是计算机视觉中的一个具有挑战性的任务。在本文中,我们介绍了PGCA-NET,配备了金字塔引导的通道注意融合块(PGCAFB)的显着性检测任务。给定输入图像,使用深度卷积神经网络(DCNN)提取分层功能,然后从最高级别的语义功能开始,我们逐步级级通过聚合较低级别的详细功能来恢复空间显着细节。由于对于浅层详细特征的弱歧视能力,直接向语义特征引入它们只会导致次优效果。因此,我们采取了一个新的金字塔通道注意机制,在聚合之前参加有用的详细浅景点频道。实验结果表明,我们提出的方法在5个基准测试集中优于竞争对手。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号