首页> 外文期刊>The Visual Computer >Multi-level progressive parallel attention guided salient object detection for RGB-D images
【24h】

Multi-level progressive parallel attention guided salient object detection for RGB-D images

机译:RGB-D图像的多级逐行并行注意引导突出对象检测

获取原文
获取原文并翻译 | 示例

摘要

Detecting salient objects in RGB-D images attracts more and more attention in recent years. It benefits from the widespread use of depth sensors and can be applied in the comprehensive understanding of RGB-D images. Existing models focus on double-stream networks which transfer from color stream to depth stream, but depth stream with one channel information cannot learn the same feature as color stream with three channels information even if HHA representation is adopted. In our works, RGB-D four-channels input is chosen, and meanwhile, progressive parallel spatial and channel attention mechanisms are performed to improve feature representation. Spatial and channel attention can pay more attention on partial positions and channels in the image which show higher response to salient objects. Both attentive features are optimized by attentive feature from higher layer, respectively, and parallel fed into recurrent convolutional layer to generate side-output saliency maps guided by saliency map from higher layer. Last multi-level saliency maps are fused together from multi-scale perspective. Experiments on benchmark datasets demonstrate that parallel attention mechanism and progressive optimization operation play an important role in improving the accuracy of salient object detection, and our model outperforms state-of-the-art models in evaluation matrices.
机译:近年来检测RGB-D图像中的突出对象吸引了越来越多的关注。它受益于广泛使用深度传感器,可以在对RGB-D图像的综合理解中应用。现有模型专注于双流网络,其从彩色流传输到深度流,但是对于一个通道信息的深度流不能将与具有三个信道信息的颜色流的深度流,即使采用HHA表示,也不能使用三个通道信息。在我们的作品中,选择RGB-D四通道输入,同时,执行逐行的并行空间和信道注意机制以改善特征表示。空间和渠道注意力可以在图像中的部分位置和通道上更多关注,这对突出对象的响应较高。两者的细节通过从更高层的细节特征进行优化,并且并联进入复发卷积层以产生由高层由显着图引导的副输出显着图。最后的多级显着性图与多尺度的透视融合在一起。基准数据集的实验表明,并行关注机制和逐行优化操作在提高突出物体检测的准确性方面发挥着重要作用,我们的模型优于评估矩阵中的最先进模型。

著录项

  • 来源
    《The Visual Computer》 |2021年第3期|529-540|共12页
  • 作者单位

    Anhui Univ Sch Comp Sci & Technol Key Lab Intelligent Comp & Signal Proc Minist Educ Hefei Peoples R China;

    Anhui Univ Sch Comp Sci & Technol Key Lab Intelligent Comp & Signal Proc Minist Educ Hefei Peoples R China;

    Anhui Univ Sch Comp Sci & Technol Key Lab Intelligent Comp & Signal Proc Minist Educ Hefei Peoples R China;

    Anhui Univ Sch Comp Sci & Technol Key Lab Intelligent Comp & Signal Proc Minist Educ Hefei Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Salient object detection; RGB-D image; Attention mechanism; Recurrent convolutional layer;

    机译:突出物体检测;RGB-D图像;注意机制;复发卷积层;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号