首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition >Progressive Attention Guided Recurrent Network for Salient Object Detection
【24h】

Progressive Attention Guided Recurrent Network for Salient Object Detection

机译:渐进式注意力引导循环网络用于显着物体检测

获取原文

摘要

Effective convolutional features play an important role in saliency estimation but how to learn powerful features for saliency is still a challenging task. FCN-based methods directly apply multi-level convolutional features without distinction, which leads to sub-optimal results due to the distraction from redundant details. In this paper, we propose a novel attention guided network which selectively integrates multi-level contextual information in a progressive manner. Attentive features generated by our network can alleviate distraction of background thus achieve better performance. On the other hand, it is observed that most of existing algorithms conduct salient object detection by exploiting side-output features of the backbone feature extraction network. However, shallower layers of backbone network lack the ability to obtain global semantic information, which limits the effective feature learning. To address the problem, we introduce multi-path recurrent feedback to enhance our proposed progressive attention driven framework. Through multi-path recurrent connections, global semantic information from the top convolutional layer is transferred to shallower layers, which intrinsically refines the entire network. Experimental results on six benchmark datasets demonstrate that our algorithm performs favorably against the state-of-the-art approaches.
机译:有效的卷积特征在显着性估计中起着重要作用,但是如何学习显着性的强大特征仍然是一项艰巨的任务。基于FCN的方法不加区分地直接应用多级卷积特征,由于干扰了冗余细节,因此导致了次优结果。在本文中,我们提出了一种新颖的注意力导向网络,该网络以渐进方式选择性地集成了多级上下文信息。我们的网络生成的细心功能可以减轻背景干扰,从而获得更好的性能。另一方面,可以观察到,大多数现有算法都是通过利用主干特征提取网络的侧输出特征来进行显着对象检测的。但是,骨干网络的较浅层缺乏获取全局语义信息的能力,这限制了有效的特征学习。为了解决该问题,我们引入了多路径递归反馈来增强我们提出的渐进式注意力驱动框架。通过多路径循环连接,来自顶层卷积层的全局语义信息将传输到较浅的层,从而从本质上精炼整个网络。在六个基准数据集上的实验结果表明,我们的算法相对于最新方法具有良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号