首页> 外文期刊>Intelligent automation and soft computing >Extreme Learning Machine with Elastic Net Regularization
【24h】

Extreme Learning Machine with Elastic Net Regularization

机译:具有弹性净正规化的极限学习机

获取原文
获取原文并翻译 | 示例

摘要

Compared with deep neural learning, the extreme learning machine (ELM) can be quickly converged without iteratively tuning hidden nodes. Inspired by this merit, an extreme learning machine with elastic net regularization (ELM-EN) is proposed in this paper. The elastic net is a regularization method that combines LASSO and ridge penalties. This regulartation can keep a balance between system stability and solution's sparsity. Moreover, an excellent optimization method, i.e., accelerated proximal gradient, is used to find the minimum of the system optimization function. Various datasets from UCI repository and two facial expression image datasets are used to validate the efficiency of our system. Final experimental results indicate that our ELM-EN requires less training tine than multi-layer perceptron, and can achieve higher recognition accuracy than ELM and sparse ELM.
机译:与深神经学习相比,极端学习机(ELM)可以快速融合,而无需迭代调整隐藏节点。这篇论文提出了一种具有弹性净正常化(ELM-ZH)的极端学习机的启发。弹性网是一个结合套索和脊惩罚的正则化方法。该条筹备可以保持系统稳定性和解决方案的稀疏性之间的平衡。此外,使用优异的优化方法,即加速的近端梯度,用于找到系统优化功能的最小值。 UCI存储库的各种数据集和两个面部表情图像数据集用于验证系统的效率。最终的实验结果表明,我们的ELM-ZH比多层感知需要较少的训练尖端,并且可以实现比ELM和稀疏榆树更高的识别精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号