首页> 外文期刊>Intelligent automation and soft computing >Applying Probabilistic Model Checking to Path Planning in an Intelligent Transportation System Using Mobility Trajectories and Their Statistical Data
【24h】

Applying Probabilistic Model Checking to Path Planning in an Intelligent Transportation System Using Mobility Trajectories and Their Statistical Data

机译:基于移动轨迹及其统计数据的概率模型检验在智能交通系统路径规划中的应用

获取原文
获取原文并翻译 | 示例

摘要

Path planning is an important topic of research in modern intelligent traffic systems (ITSs). Traditional path planning methods aim to identify the shortest path and recommend this path to the user. However, the shortest path is not always optimal, especially in emergency rescue scenarios. Thus, complex and changeable factors, such as traffic congestion, road construction and traffic accidents, should be considered when planning paths. To address this consideration, the maximum passing probability of a road is considered the optimal condition for path recommendation. In this paper, the traffic network is abstracted as a directed graph. Probabilistic data on traffic flow are obtained using a mobile trajectory-based statistical analysis method. Subsequently, a probabilistic model of the traffic network is proposed in the form of a discretetime Markov chain (DTMC) for further computations. According to the path requirement expected by the user, a point probability pass formula and a multiple-target probability pass formula are obtained. Probabilistic computation tree logic (PCTL) is used to describe the verification property, which can be evaluated using the probabilistic symbolic model checker (PRISM). Next, based on the quantitative verification results, the maximum probability path is selected and confirmed from the set of K-shortest paths. Finally, a case study of an emergency system under real-time traffic conditions is shown, and the results of a series of experiments show that our proposed method can effectively improve the efficiency and quality of emergency rescue services.
机译:路径规划是现代智能交通系统(ITS)中研究的重要课题。传统的路径规划方法旨在识别最短路径,并将此路径推荐给用户。但是,最短路径并不总是最佳的,特别是在紧急救援情况下。因此,在规划路径时,应考虑复杂和多变的因素,例如交通拥堵,道路建设和交通事故。为了解决此问题,将道路的最大通过概率视为推荐路径的最佳条件。在本文中,交通网络被抽象为有向图。使用基于移动轨迹的统计分析方法获得交通流量的概率数据。随后,以离散时间马尔可夫链(DTMC)的形式提出了交通网络的概率模型,用于进一步的计算。根据用户期望的路径要求,得到点概率通过公式和多目标概率通过公式。概率计算树逻辑(PCTL)用于描述验证属性,可以使用概率符号模型检查器(PRISM)对其进行评估。接下来,基于定量验证结果,从K个最短路径集中选择并确认最大概率路径。最后,以实时交通条件下的应急系统为例,进行了一系列实验,结果表明,本文提出的方法可以有效提高应急救援服务的效率和质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号