首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >Detection and Classification of Power Quality Disturbances Using Double Resolution S-Transform and DAG-SVMs
【24h】

Detection and Classification of Power Quality Disturbances Using Double Resolution S-Transform and DAG-SVMs

机译:使用双分辨率S变换和DAG-SVM对电能质量扰动进行检测和分类

获取原文
获取原文并翻译 | 示例

摘要

The accurate detection and classification of power quality (PQ) disturbances in power systems is a key step to determine the causes of these events before any proper countermeasure could be taken. This paper presents a new algorithm for detection and classification of PQ disturbances based on the combination of double-resolution S-transform (DRST) and directed acyclic graph support vector machines (DAG-SVMs). The proposed method first employs DRST for an effective feature extraction from power signals. Then, the DAG-SVMs are used to predict the classes of PQ disturbances. The DRST not only has better time-frequency localization and stronger robustness but also reduces the computational complexity without losing the useful information of the original signal in comparison with the traditional S-transform. Through the combined use of DRST and DAG-SVMs, the algorithm can be easily implemented in embedded real-time applications. Finally, the implementation of the proposed algorithm in a digital signal processor + advanced reduced instruction set computing machine-based hardware test platform is introduced. The effectiveness of the proposed method is demonstrated by means of computer simulations and practical experiments with single and combined PQ disturbances.
机译:在采取任何适当的对策之前,准确检测和分类电力系统中的电能质量(PQ)干扰是确定这些事件原因的关键步骤。本文提出了一种基于双分辨率S变换(DRST)和有向无环图支持向量机(DAG-SVM)的PQ干扰检测和分类新算法。所提出的方法首先采用DRST从功率信号中进行有效的特征提取。然后,将DAG-SVM用于预测PQ干扰的类别。与传统的S变换相比,DRST不仅具有更好的时频定位和更强的鲁棒性,而且还降低了计算复杂度,而不会丢失原始信号的有用信息。通过结合使用DRST和DAG-SVM,可以轻松地在嵌入式实时应用程序中实现该算法。最后,介绍了该算法在数字信号处理器+先进的精简指令集计算机硬件测试平台中的实现。通过计算机模拟和实际实验对单个和组合PQ干扰进行验证,证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号