机译:使用双分辨率S变换和DAG-SVM对电能质量扰动进行检测和分类
College of Electrical and Information Engineering, Hunan University, Changsha, China;
College of Electrical and Information Engineering, Hunan University, Changsha, China;
College of Electrical and Information Engineering, Hunan University, Changsha, China;
College of Electrical and Information Engineering, Hunan University, Changsha, China;
Feature extraction; Signal processing algorithms; Harmonic analysis; Power system harmonics; Artificial neural networks; White noise;
机译:利用S变换和概率神经网络对电能质量扰动进行检测和分类
机译:使用集成样条小波和S变换对电能质量扰动数据进行压缩,检测和分类
机译:一种新的快速离散S变换和决策树,用于电能质量扰动波形的分类和监控
机译:基于ELM的分类器通过S变换和快速S变换对多个电能质量扰动进行识别和分类
机译:基于广域相量测量的电力系统扰动检测和分类。
机译:基于希尔伯特变换的智能传感器用于电能质量扰动的检测分类和量化
机译:基于最优多分辨率快速s变换和CaRT算法的电能质量扰动特征选择与识别