首页> 外文会议>International Conference on Data Science and Business Analytics >Recognition and Classification of Multiple Power Quality Disturbances with S-Transform and Fast S-Transform Using ELM Based Classifier
【24h】

Recognition and Classification of Multiple Power Quality Disturbances with S-Transform and Fast S-Transform Using ELM Based Classifier

机译:基于ELM的分类器通过S变换和快速S变换对多个电能质量扰动进行识别和分类

获取原文

摘要

The paper aims to develop an effective method to identify, detect and classify power quality disturbances using the efficient Extreme learning machine (ELM). It's important to evaluate the learning time while designing any kind of computational algorithms, which used for classification. ELM comprises of a single hidden layer Feed Forward Neural Network (SFNN) with better generalization ability and extreme fast learning. The efficient Fast S-transform(FST) is imposed to extract discriminating features of different power quality disturbances wave form and that correspondence feature will be given as input of the ELM classifier and further proceed for classification. By this process performance of FST based ELM classifier is compared with the ST based ELM classifier with distinctive features of different PQ disturbances. FST signal analysis is done by using different classifier and corresponding result is found out. Ten varieties of PQ disturbances have been chosen for the proposed classification task. The proposed FST based ELM classification is feasible and promising for a real time application as evidenced from our results.
机译:本文旨在开发一种使用高效的极限学习机(ELM)来识别,检测和分类电能质量扰动的有效方法。在设计用于分类的任何类型的计算算法时,评估学习时间非常重要。 ELM由具有更好泛化能力和极快学习能力的单个隐藏层前馈神经网络(SFNN)组成。高效的快速S变换(FST)用于提取不同电能质量扰动波形的区分特征,并将对应特征作为ELM分类器的输入,并进一步进行分类。通过该过程,将基于FST的ELM分类器的性能与具有不同PQ干扰的鲜明特征的基于ST的ELM分类器进行比较。通过使用不同的分类器进行FST信号分析,并找到相应的结果。已为建议的分类任务选择了十种PQ干扰。我们的结果证明,基于FST的ELM分类建议是可行的,并有望用于实时应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号