首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >Weakly Supervised Instance Segmentation of Electrical Equipment Based on RGB-T Automatic Annotation
【24h】

Weakly Supervised Instance Segmentation of Electrical Equipment Based on RGB-T Automatic Annotation

机译:基于RGB-T自动注释的电气设备弱监督实例分割

获取原文
获取原文并翻译 | 示例

摘要

To address the problem of weakly supervised instance segmentation for electrical equipment using only a red, green, and blue (RGB) camera, an automatic annotation of masks of samples (AAMS) method based on thermal image guidance is proposed in this article. With only image-level label supervision, we exploit foreground segmentation results of thermal images to guide the instance mask extraction of electrical equipment in RGB images through the heterogeneous pixel registration algorithm between RGB-thermal (RGB-T) image pairs. It is realized to automatically annotate instance masks, which greatly improves efficiency and decreases costs. In addition, we further propose a progressively optimized model (POM) for instance segmentation, which first utilizes the fully connected conditional random field (CRF) and the constrain-to-boundary loss to specify fine-detailed boundaries of each object and to solve the difficulty of segmenting electrical equipment with complicated structures. This model also explores the self-paced learning technology to solve the issue of resolution differences between RGB-T image pairs for improving the generalization ability. By comparison to the other state-of-the-arts, experimental results show that our method can obtain by far the better performance on the electrical equipment data set.
机译:为了解决仅使用红色,绿色和蓝色(RGB)相机的电气设备弱监督实例分割的问题,本文提出了基于热图像引导的样品(AAMS)方法的自动注释。只有图像级标签监督,我们利用热图像的前景分段结果,通过RGB-Thermal(RGB-T)图像对之间的异构像素配准算法来引导RGB图像中的电气设备的实例掩模提取。它实现自动注释实例掩码,这大大提高了效率并降低了成本。另外,我们还提出了一种逐步优化的模型(POM),例如分割,其首先利用完全连接的条件随机字段(CRF)和约束到边界丢失来指定每个对象的细小详细边界并解决分割具有复杂结构的电气设备的难度。该模型还探讨了自定节奏的学习技术,以解决RGB-T图像对之间的分辨率差异问题,以提高泛化能力。通过与其他最先进的最先进的,实验结果表明,我们的方法可以在迄今为止更好地获得电气设备数据集的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号