首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >A Multilevel Information Fusion-Based Deep Learning Method for Vision-Based Defect Recognition
【24h】

A Multilevel Information Fusion-Based Deep Learning Method for Vision-Based Defect Recognition

机译:基于多级信息融合的视觉缺陷识别深度学习方法

获取原文
获取原文并翻译 | 示例

摘要

Vision-based defect recognition is an important technology to guarantee quality in modern manufacturing systems. Deep learning (DL) becomes a research hotspot in vision-based defect recognition due to outstanding performances. However, most of the DL methods require a large sample to learn the defect information. While in some real-world cases, it is difficult and costly for data collecting, and only a small sample is available. Generally, a small sample contains less information, which may mislead the DL models so that they cannot work as expected. Therefore, this requirement impedes the wide applications of DL in vision-based defect recognition. To overcome this problem, this article proposes a multilevel information fusion-based DL method for vision-based defect recognition. In the proposed method, a three-level Gaussian pyramid is introduced to generate multilevel information of the defect so that more information is available for model training. After the Gaussian pyramid, three VGG16 networks are built to learn the information and the outputs are fused for the final recognition result. The experimental results show that the proposed method can extract more useful information and achieve better performances on small-sample tasks, compared with the conventional DL methods and defect recognition methods. Furthermore, the analysis results of the robustness and response time also indicate that the proposed method is robust for the noise input, and it is fast for defect recognition, which takes 13.74 ms to handle a defect image.
机译:基于视觉的缺陷识别是一种保证现代制造系统质量的重要技术。由于出色的表现,深度学习(DL)成为基于视觉缺陷识别的研究热点。然而,大多数DL方法需要大型样本来学习缺陷信息。虽然在某些现实世界的案例中,但数据收集是困难且昂贵的,并且只有一个小型样品。通常,小型样本包含较少的信息,这可能会误导DL模型,以便它们无法按预期工作。因此,该要求阻碍了DL在基于视觉的缺陷识别中的广泛应用。为了克服这个问题,本文提出了一种基于多级信息融合的DL方法,用于基于视觉的缺陷识别。在该方法中,引入了一个三级高斯金字塔以产生缺陷的多级信息,以便更多信息可用于模型培训。在高斯金字塔之后,建立了三个VGG16网络以了解信息,输出融合用于最终识别结果。实验结果表明,与传统的DL方法和缺陷识别方法相比,该方法可以提取更有用的信息并实现小型任务的更好性能。此外,鲁棒性和响应时间的分析结果还表明该方法对于噪声输入是鲁棒的,并且缺陷识别是快速的,需要13.74ms来处理缺陷图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号