首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >Modeling ADC Nonlinearity in Monte Carlo Procedures for Uncertainty Estimation
【24h】

Modeling ADC Nonlinearity in Monte Carlo Procedures for Uncertainty Estimation

机译:在蒙特卡洛程序中为不确定性估计建模ADC非线性

获取原文
获取原文并翻译 | 示例

摘要

Monte Carlo procedures can be successfully employed to evaluate the uncertainty of measurements performed by digital processing of sampled data, provided that the uncertainties affecting the input samples are modeled correctly. The static nonlinearity is the most difficult error to be modeled, since the technical specifications provided by the manufacturers of the acquisition systems are not usually sufficient to describe the nonlinearity curve over the entire input range. Thus, suitable assumptions are needed and approximations are unavoidable. This paper focuses on measurement systems based on plug-in data acquisition boards, which are generally based on successive approximation register analog-to-digital conversion (ADC). A behavioral model is presented, according to which the overall nonlinearity is divided into two contributions: a smooth component, responsible for the macroscopic error trend in the output domain, and a component with sudden variations in the scale of values. Theoretical fundamentals of the method are reported, and experimental results highlighting the reliability of the proposed approach are discussed.
机译:只要正确地模拟了影响输入样本的不确定性,就可以成功地采用蒙特卡洛程序来评估通过对采样数据进行数字处理而进行的测量的不确定性。静态非线性是最难建模的误差,因为采集系统制造商提供的技术规范通常不足以描述整个输入范围内的非线性曲线。因此,需要适当的假设,并且近似是不可避免的。本文重点介绍基于插入式数据采集板的测量系统,该系统通常基于逐次逼近寄存器模数转换(ADC)。提出了一个行为模型,根据该模型,整个非线性被分为两个部分:一个平滑分量,该分量负责输出域中的宏观误差趋势;另一个分量值的值突然变化。报道了该方法的理论基础,并讨论了突出该方法可靠性的实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号