...
首页> 外文期刊>Solid Earth >Monte Carlo simulation for uncertainty estimation on structural data in implicit 3-D geological modeling, a guide for disturbance distribution selection and parameterization
【24h】

Monte Carlo simulation for uncertainty estimation on structural data in implicit 3-D geological modeling, a guide for disturbance distribution selection and parameterization

机译:隐式3D地质建模中结构数据不确定性估计的蒙特卡罗模拟,扰动分布选择和参数化指南

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Three-dimensional (3-D) geological structural modeling aims to determine geological information in a 3-D space using structural data (foliations and interfaces) and topological rules as inputs. This is necessary in any project in which the properties of the subsurface matters; they express our understanding of geometries in depth. For that reason, 3-D geological models have a wide range of practical applications including but not restricted to civil engineering, the oil and gas industry, the mining industry, and water management. These models, however, are fraught with uncertainties originating from the inherent flaws of the modeling engines (working hypotheses, interpolator's parameterization) and the inherent lack of knowledge in areas where there are no observations combined with input uncertainty (observational, conceptual and technical errors). Because 3-D geological models are often used for impactful decision-making it is critical that all 3-D geological models provide accurate estimates of uncertainty. This paper's focus is set on the effect of structural input data measurement uncertainty propagation in implicit 3-D geological modeling. This aim is achieved using Monte Carlo simulation for uncertainty estimation (MCUE), a stochastic method which samples from predefined disturbance probability distributions that represent the uncertainty of the original input data set. MCUE is used to produce hundreds to thousands of altered unique data sets. The altered data sets are used as inputs to produce a range of plausible 3-D models. The plausible models are then combined into a single probabilistic model as a means to propagate uncertainty from the input data to the final model. In this paper, several improved methods for MCUE are proposed. The methods pertain to distribution selection for input uncertainty, sample analysis and statistical consistency of the sampled distribution. Pole vector sampling is proposed as a more rigorous alternative than dip vector sampling for planar features and the use of a Bayesian approach to disturbance distribution parameterization is suggested. The influence of incorrect disturbance distributions is discussed and propositions are made and evaluated on synthetic and realistic cases to address the sighted issues. The distribution of the errors of the observed data (i.e., scedasticity) is shown to affect the quality of prior distributions for MCUE. Results demonstrate that the proposed workflows improve the reliability of uncertainty estimation and diminish the occurrence of artifacts.
机译:三维(3-D)地质结构建模旨在使用结构数据(叶面和界面)和拓扑规则作为输入来确定3-D空间中的地质信息。在任何涉及地下属性的项目中,这都是必需的;他们表达了我们对几何的深入理解。因此,3D地质模型具有广泛的实际应用,包括但不限于土木工程,石油和天然气工业,采矿业和水管理。但是,这些模型充满了不确定性,这些不确定性源于建模引擎的固有缺陷(工作假设,内插器的参数化)以及在没有观测值与输入不确定性(观测,概念和技术错误)相结合的领域中固有的知识不足。由于3-D地质模型通常用于有影响力的决策,因此所有3-D地质模型都必须提供准确的不确定性估算,这一点至关重要。本文的重点放在隐式3-D地质建模中结构输入数据测量不确定性传播的影响上。使用蒙特卡罗模拟不确定性估计(MCUE)可以实现此目标,该方法是一种随机方法,该方法从代表原始输入数据集不确定性的预定义干扰概率分布中进行采样。 MCUE用于生成数百到数千个更改后的唯一数据集。更改后的数据集用作输入,以生成一系列合理的3D模型。然后,将合理的模型合并为一个概率模型,以将不确定性从输入数据传播到最终模型。本文提出了几种改进的MCU方法。这些方法涉及用于输入不确定性的分布选择,样本分析和抽样分布的统计一致性。对于平面特征,极点矢量采样被提议为比倾角矢量采样更严格的替代方法,并且建议使用贝叶斯方法进行干扰分布参数化。讨论了不正确的干扰分布的影响,并针对综合和现实情况提出了建议并进行了评估,以解决可见的问题。所观察到的数据的误差分布(即,平稳性)被显示为影响MCU的先前分布的质量。结果表明,提出的工作流程提高了不确定性估计的可靠性,并减少了伪影的发生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号