首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >Video-Based Tracking and Incremental Learning Applied to Rodent Behavioral Activity Under Near-Infrared Illumination
【24h】

Video-Based Tracking and Incremental Learning Applied to Rodent Behavioral Activity Under Near-Infrared Illumination

机译:基于视频的跟踪和增量学习应用于近红外照明下的啮齿动物行为活动

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a noninvasive video tracking system for measurement of rodent behavioral activity under near-infrared (NIR) illumination, where the rodent is of a similar color to the background. This novel method allows position tracking in the dark, when rodents are generally most active, or under visible light. It also improves current video tracking methods under low-contrast conditions. We also manually extracted rodent features and classified three common behaviors (sitting, walking, and rearing) using an inductive algorithm—a decision tree (ID3). In addition, we proposed the use of a time–spatial incremental decision tree (ID5R), with which new behavior instances can be used to update the existing decision tree in an online manner. These were implemented using incremental tree induction. Open-field locomotor activity was investigated under “visible” ( $hbox{460.5} {-} hbox{561.1} hbox{nm}$), 880- and 940-nm wavelengths of NIR, as well as a “dark” condition consisting of a very small level of NIR illumination. A widely used NIR crossbeam-based tracking system (Activity Monitor, MED Associates, Inc., Georgia, VT) was used to record simultaneous position data for validation of the video tracking system. The classification accuracy for the set of new test data was 81.3%.
机译:本文介绍了一种用于在近红外(NIR)照明下测量啮齿动物行为活动的无创视频跟踪系统,其中啮齿动物的颜色与背景颜色相似。当啮齿动物通常最活跃时,或在可见光下,这种新颖的方法可以在黑暗中跟踪位置。它还改善了低对比度条件下的当前视频跟踪方法。我们还手动提取了啮齿动物的特征,并使用归纳算法-决策树(ID3)对三种常见行为(坐着,走路和抚养)进行了分类。此外,我们建议使用时空增量决策树(ID5R),借助该决策树,新的行为实例可以用于在线更新现有决策树。这些是使用增量树归纳法实现的。在“可见”($ hbox {460.5} {-} hbox {561.1} hbox {nm} $),880和940 nm波长的NIR以及包括非常小的NIR照明广泛使用的基于近红外光束的跟踪系统(Activity Monitor,MED Associates,Inc。,佐治亚州,佛蒙特州)被用来记录同时的位置数据,以验证视频跟踪系统。这组新测试数据的分类准确性为81.3%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号