首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >Design, Implementation, and Analysis of a 3-D Magnetic Tweezer System With High Magnetic Field Gradient
【24h】

Design, Implementation, and Analysis of a 3-D Magnetic Tweezer System With High Magnetic Field Gradient

机译:具有高磁场梯度的3-D磁镊系统的设计,实现和分析

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the design, modeling, and implementation of an innovative, high-power hexapole magnetic tweezer system for 3-D micromanipulations. The designed system has six sharp-tipped magnetic poles that are aligned in an inclined Cartesian coordinate system. The installation platform including yokes was made by a 3-D printer using the magnetized material. The magnetic field was generated through the tips after current was applied to individual electromagnetic coils located on each magnetic pole. The effective working space in the system is larger than other similar designs, so it is available to give a wide range of mobility for a microrobot. Strong magnetic fields of up to 6 mT can be generated in the center of the working space, which provides better performance on microscale robot operations. The numerical magnetic field profile was simulated using COMSOL Multiphysics, and the results were compared with the experimental measurement of a magnetic field in the designed system. We prove that the developed hexapole magnetic tweezer has enough power and controllability to guide microswimmers in Newtonian fluid environments and can follow 3-D trajectories. The system will be optimized further to be implemented into cell penetration research. Finally, the application will be deployed into in vivo based environments.
机译:本文介绍了用于3-D微操作的创新型高功率六极磁镊子系统的设计,建模和实现。设计的系统具有六个尖头磁极,它们在倾斜的笛卡尔坐标系中对齐。包括磁轭的安装平台是由3-D打印机使用磁化材料制成的。在将电流施加到位于每个磁极上的各个电磁线圈后,会通过尖端产生磁场。系统中的有效工作空间大于其他类似设计,因此可为微型机器人提供广泛的移动性。可以在工作空间的中心产生高达6 mT的强磁场,从而在微型机器人的操作中提供更好的性能。使用COMSOL Multiphysics模拟了数值磁场分布,并将结果与​​设计系统中磁场的实验测量结果进行了比较。我们证明,开发的六极磁力镊子具有足够的功率和可控性,可以在牛顿流体环境中引导微泳者,并且可以遵循3-D轨迹。该系统将进一步优化,以实施到细胞渗透研究中。最后,该应用程序将部署到基于体内的环境中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号