首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >Extended Kalman filter-based sensor fusion for operational space control of a robot arm
【24h】

Extended Kalman filter-based sensor fusion for operational space control of a robot arm

机译:基于扩展卡尔曼滤波器的传感器融合,可控制机器人手臂的操作空间

获取原文
获取原文并翻译 | 示例

摘要

Accurate measurements of positions, velocities, and accelerations in both joint and operational space are required for achieving accurate operational space motion control of robots. Servomotors used for joint actuation are normally equipped with position sensors and optionally with velocity sensors for interlink motion measurements. Further improvements in measurement accuracy can be obtained by equipping the robot arm with accelerometers for absolute acceleration measurement. In this paper, an extended Kalman filter is used for multisensor fusion. The real-time control algorithm was previously based on the assumption of a jerk represented as a processed white noise with the zero mean. In reality, the accelerations are varying in time during the arm motion, and the zero mean assumption is not valid, particularly during fast accelerating periods. In this paper, a model predictive control approach is used for predetermining next-time-step jerk such that the remaining term can be modeled as Gaussian white noise. Experimental results illustrate the effectiveness of the proposed sensor fusion approach.
机译:需要精确测量关节和操作空间中的位置,速度和加速度,以实现机器人的精确操作空间运动控制。用于关节致动的伺服电机通常配备位置传感器,并可选配速度传感器以进行互连运动测量。通过为机械臂配备用于绝对加速度测量的加速度计,可以进一步提高测量精度。在本文中,扩展的卡尔曼滤波器用于多传感器融合。实时控制算法以前是基于一个假设,即以零均值表示为经过处理的白噪声的加扰。实际上,加速度在手臂运动期间随时间变化,并且零均值假设无效,尤其是在快速加速期间。在本文中,模型预测控制方法用于预先确定下一步的加加速度,以便可以将剩余项建模为高斯白噪声。实验结果说明了所提出的传感器融合方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号