首页> 外文期刊>INFORMS journal on computing >Optimization for L_1-Norm Error Fitting via Data Aggregation
【24h】

Optimization for L_1-Norm Error Fitting via Data Aggregation

机译:通过数据聚合的L_1-NOM错误拟合优化

获取原文
获取原文并翻译 | 示例

摘要

We propose a data aggregation-based algorithm with monotonic convergence to a global optimum for a generalized version of the L_1-norm error fitting model with an assumption of the fitting function. The proposed algorithm generalizes the recent algorithm in the literature, aggregate and iterative disaggregate (AID), which selectively solves three specific L_1-norm error fitting problems. With the proposed algorithm, any L_1-norm error fitting model can be solved optimally if it follows the form of the L_1-norm error fitting problem and if the fitting function satisfies the assumption. The proposed algorithm can also solve multidimensional fitting problems with arbitrary constraints on the fitting coefficients matrix. The generalized problem includes popular models, such as regression and the orthogonal Procrustes problem. The results of the computational experiment show that the proposed algorithms are faster than the state-of-the-art benchmarks for L_1-norm regression subset selection and Li-norm regression over a sphere. Furthermore, the relative performance of the proposed algorithm improves as data size increases.
机译:我们提出了一种基于数据聚合的基于数据聚合的算法,该算法对于L_1-NOM误差拟合模型的广义版本的全局最优,假设拟合功能。所提出的算法概括了文献中最近的算法,聚合和迭代分解(AID),其选择性地解决了三个特定的L_1-NOM符合替换问题。利用所提出的算法,如果遵循L_1-NORM误差拟合问题的形式,并且如果拟合功能满足假设,则可以最佳地解决任何L_1-NOM误差拟合模型。该算法还可以解决拟合系数矩阵上的任意约束的多维拟合问题。概括的问题包括流行模型,例如回归和正交的幼王问题。计算实验的结果表明,所提出的算法比L_1-NARM回归子集选择和领域的LI-NONG回归更快。此外,随着数据大小的增加,所提出的算法的相对性能提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号