首页> 外文期刊>INFORMS journal on computing >Level 2 Reformulation Linearization Technique-Based Parallel Algorithms for Solving Large Quadratic Assignment Problems on Graphics Processing Unit Clusters
【24h】

Level 2 Reformulation Linearization Technique-Based Parallel Algorithms for Solving Large Quadratic Assignment Problems on Graphics Processing Unit Clusters

机译:基于二级重构线性化技术的并行算法,用于解决图形处理单元簇上的大型二次分配问题

获取原文
获取原文并翻译 | 示例

摘要

This paper discusses efficient parallel algorithms for obtaining strong lower bounds and exact solutions for large instances of the quadratic assignment problem (QAP). Our parallel architecture is comprised of both multicore processors and compute unified device architecture-enabled NVIDIA graphics processing units (GPUs) on the Blue Waters Supercomputing Facility at the University of Illinois at Urbana-Champaign. We propose novel parallelization of the Lagrangian dual ascent algorithm on the GPUs, which is used for solving a QAP formulation based on the level-2 reformulation linearization technique. The linear assignment subproblems in this procedure are solved using our accelerated Hungarian algorithm [Date K, Rakesh N (2016) GPU-accelerated Hungarian algorithms for the linear assignment problem. Parallel Computing 57:52-72.]. We embed this accelerated dual-ascent algorithm in a parallel branch-and-bound scheme and conduct extensive computational experiments on single and multiple GPUs, using problem instances with up to 42 facilities from the quadratic assignment problem library (QAPLIB). The experiments suggest that our GPU-based approach is scalable, and it can be used to obtain tight lower bounds on large QAP instances. Our accelerated branch-and-bound scheme is able to comfortably solve Nugent and Taillard instances (up to 30 facilities) from the QAPLIB, using a modest number of GPUs.
机译:本文讨论了有效的并行算法,可为二次分配问题(QAP)的大型实例获得强大的下界和精确解。我们的并行架构既包含多核处理器,又位于伊利诺伊大学厄本那-香槟分校的Blue Waters超级计算设施上,可计算启用了统一设备架构的NVIDIA图形处理单元(GPU)。我们在GPU上提出了Lagrangian对偶上升算法的新颖并行化,该算法用于基于2级重构线性化技术来求解QAP公式。使用我们的加速匈牙利算法[Date K,Rakesh N(2016)GPU加速匈牙利算法解决线性分配问题],可解决此过程中的线性分配子问题。并行计算57:52-72。]。我们将这种加速的双重上升算法嵌入并行的分支定界方案中,并使用具有来自二次分配问题库(QAPLIB)的多达42个设施的问题实例,在单个和多个GPU上进行了广泛的计算实验。实验表明,我们基于GPU的方法具有可扩展性,可用于在大型QAP实例上获得严格的下限。我们的加速分支定界方案能够使用少量GPU从QAPLIB轻松解决Nugent和Taillard实例(多达30个设施)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号