首页> 外文期刊>INFORMS journal on computing >A Level-3 Reformulation-Linearization Technique-Based Bound for the Quadratic Assignment Problem
【24h】

A Level-3 Reformulation-Linearization Technique-Based Bound for the Quadratic Assignment Problem

机译:基于二级重构线性化技术的边界用于二次分配问题

获取原文
获取原文并翻译 | 示例

摘要

We apply the level-3 reformulation-linearization technique (RLT3) to the quadratic assignment problem (QAP). We then present our experience in calculating lower bounds using an essentially new algorithm based on this RLT3 formulation. Our method is not guaranteed to calculate the RLT3 lower bound exactly, but it approximates this lower bound very closely and reaches it in some instances. For Nugent problem instances up to size 24, our RLT3-based lower bound calculation solves these problem instances exactly or serves to verify the optimal value. Calculating lower bounds for problem sizes larger than size 27 still presents a challenge because of the large amount of memory needed to implement the RLT3 formulation. Our presentation emphasizes the steps taken to significantly conserve memory by using the numerous problem symmetries in the RLT3 formulation of the QAP. We implemented this RLT3-based bound calculation in a branch-and-bound algorithm. Experimental results project significant runtime improvement over all other published QAP branch-and-bound solvers.
机译:我们将3级重构线性化技术(RLT3)应用于二次分配问题(QAP)。然后,我们介绍基于此RLT3公式使用本质上新的算法计算下限的经验。我们的方法不能保证精确计算RLT3的下限,但可以非常接近地逼近此下限,在某些情况下可以达到该下限。对于大小最大为24的Nugent问题实例,我们基于RLT3的下限计算可以精确解决这些问题实例,或者用于验证最佳值。由于实现RLT3公式需要大量内存,因此计算大于27的问题大小的下界仍然是一个挑战。我们的演讲重点介绍了通过在QAP的RLT3公式中使用众多问题对称性来显着节省内存的步骤。我们在分支定界算法中实现了基于RLT3的边界计算。实验结果表明,与所有其他已发布的QAP分支定界求解器相比,运行时间有了显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号