首页> 外文期刊>INFORMS journal on computing >A Local-Search-Based Heuristic for the Demand-Constrained Multidimensional Knapsack Problem
【24h】

A Local-Search-Based Heuristic for the Demand-Constrained Multidimensional Knapsack Problem

机译:需求受限的多维背包问题的基于局部搜索的启发式算法

获取原文
获取原文并翻译 | 示例

摘要

We consider an extension of the 0-1 multidimensional knapsack problem in which there are greater-than-or-equal-to inequalities, called demand constraints, in addition to the standard less-than-or-equal-to constraints. Moreover, the objective function coefficients are not constrained in sign. This problem is worth considering because it is embedded in models of practical application, it has an intriguing combinatorial structure, and it appears to be a challenging problem for commercial ILP solvers. Our approach is based on a nested tabu-search algorithm in which neighborhoods with different structures are exploited. First, a tabu-search procedure is carried out in which mainly the infeasible region is explored. Once feasibility has been established, a second tabu-search procedure, which analyzes only feasible solutions, is applied. The algorithm has been tested on a wide set of instances. Computational results are discussed.
机译:我们考虑了0-1多维背包问题的扩展,该问题中除了标准的小于或等于约束之外,还存在大于或等于等于的不平等现象,称为需求约束。此外,目标函数系数不受符号的限制。这个问题值得考虑,因为它被嵌入到实际应用的模型中,具有有趣的组合结构,并且对于商业ILP求解器来说似乎是一个具有挑战性的问题。我们的方法基于嵌套禁忌搜索算法,其中利用了具有不同结构的邻域。首先,执行禁忌搜索程序,其中主要探索不可行区域。确定可行性后,将应用第二个禁忌搜索程序,该程序仅分析可行的解决方案。该算法已在大量实例上进行了测试。讨论了计算结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号