首页> 外文期刊>Evolutionary computation >A Case Study of Controlling Crossover in a Selection Hyper-heuristic Framework Using the Multidimensional Knapsack Problem
【24h】

A Case Study of Controlling Crossover in a Selection Hyper-heuristic Framework Using the Multidimensional Knapsack Problem

机译:使用多维背包问题在选择超启发式框架中控制交叉的案例研究

获取原文
获取原文并翻译 | 示例

摘要

Hyper-heuristics are high-level methodologies for solving complex problems that operate on a search space of heuristics. In a selection hyper-heuristic framework, a heuristic is chosen from an existing set of low-level heuristics and applied to the current solution to produce a new solution at each point in the search. The use of crossover low-level heuristics is possible in an increasing number of general-purpose hyper-heuristic tools such as HyFlex and Hyperion. However, little work has been undertaken to assess how best to utilise it. Since a single-point search hyper-heuristic operates on a single candidate solution, and two candidate solutions are required for crossover, a mechanism is required to control the choice of the other solution. The frameworks we propose maintain a list of potential solutions for use in crossover. We investigate the use of such lists at two conceptual levels. First, crossover is controlled at the hyper-heuristic level where no problem-specific information is required. Second, it is controlled at the problem domain level where problem-specific information is used to produce good-quality solutions to use in crossover. A number of selection hyper-heuristics are compared using these frameworks over three benchmark libraries with varying properties for an NP-hard optimisation problem: the multidimensional 0-1 knapsack problem. It is shown that allowing crossover to be managed at the domain level outperforms managing crossover at the hyper-heuristic level in this problem domain.
机译:超启发式算法是用于解决在启发式搜索空间上运行的复杂问题的高级方法。在选择超启发式框架中,从现有的一组低级启发式算法中选择一种启发式算法,并将其应用于当前解决方案,以在搜索的每个点上产生新的解决方案。在越来越多的通用超启发式工具(例如HyFlex和Hyperion)中,可以使用交叉的低级启发式方法。但是,几乎没有工作来评估如何最好地利用它。由于单点搜索超启发式算法对单个候选解决方案进行操作,并且交叉需要两个候选解决方案,因此需要一种机制来控制其他解决方案的选择。我们建议的框架保留了可用于交叉的潜在解决方案列表。我们在两个概念级别上研究了此类列表的使用。首先,在不需要启发式特定信息的超启发式级别上控制交叉。其次,它是在问题域级别进行控制的,其中使用特定于问题的信息来生成可用于交叉的高质量解决方案。使用这些框架,在三个基准库中比较了许多选择超启发式方法,这些库具有不同的属性,可解决NP硬优化问题:多维0-1背包问题。结果表明,在此问题域中,允许在域级别管理交叉优于在超启发式级别管理交叉。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号