首页> 外文期刊>INFORMS journal on computing >Developing Effective Service Policies for Multiclass Queues with Abandonment: Asymptotic Optimality and Approximate Policy Improvement
【24h】

Developing Effective Service Policies for Multiclass Queues with Abandonment: Asymptotic Optimality and Approximate Policy Improvement

机译:为被遗弃的多类队列开发有效的服务策略:渐近最优性和近似策略改进

获取原文
获取原文并翻译 | 示例

摘要

We study a single server queuing model with multiple classes and impatient customers. The goal is to determine a service policy to maximize the long-run reward rate earned from serving customers net of holding costs and penalties respectively due to customers waiting for and leaving before receiving service. We first show that it is without loss of generality to study a pure-reward model. Since standard methods can usually only compute the optimal policy for problems with up to three customer classes, our focus is to develop a suite of heuristic approaches, with a preference for operationally simple policies with good reward characteristics. One such heuristic is the Rμθ rule-a priority policy that ranks all customer classes based on the product of reward R, service rate μ, and abandonment rate θ. We show that the Rμθ rule is asymptotically optimal as customer abandonment rates approach zero and often performs well in cases where the simpler Rμ rule performs poorly. The paper also develops an approximate policy improvement method that uses simulation and interpolation to estimate the bias function for use in a dynamic programming recursion. For systems with two or three customer classes, our numerical study indicates that the best of our simple priority policies is near optimal in most cases; when it is not, the approximate policy improvement method invariably tightens up the gap substantially. For systems with five customer classes, our heuristics typically achieve within 4% of an upper bound for the optimal value, which is computed via a linear program that relies on a relaxation of the original system. The computational requirement of the approximate policy improvement method grows rapidly when the number of customer classes or the traffic intensity increases.
机译:我们研究了具有多个类别和不耐烦的客户的单个服务器排队模型。目标是确定一种服务策略,以最大化从服务客户中获得的长期奖励率,并扣除分别由于客户在接受服务之前等待和离开而产生的持有成本和罚款。我们首先表明研究纯奖赏模型是不失一般性的。由于标准方法通常只能计算最多三个客户类别的问题的最佳策略,因此我们的重点是开发一套启发式方法,并且优先选择具有良好奖励特性的操作简单策略。一种这样的启发式方法是Rμθ规则-一种优先级策略,它根据奖励R,服务率μ和放弃率θ的乘积对所有客户类别进行排名。我们显示,当客户放弃率接近零时,Rμθ规则是渐近最优的,并且在较简单的Rμ规则执行不佳的情况下通常表现良好。本文还开发了一种近似策略改进方法,该方法使用模拟和内插法来估计用于动态规划递归的偏差函数。对于具有两个或三个客户类别的系统,我们的数值研究表明,在大多数情况下,我们最好的简单优先级策略几乎是最优的。如果不是这样,则近似的政策改进方法总是会大大缩小差距。对于具有五个客户类别的系统,我们的启发式方法通常会在最佳值上限的4%之内实现,最佳值是通过依赖原始系统松弛的线性程序来计算的。当客户类别的数量或流量强度增加时,近似策略改进方法的计算需求迅速增长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号