首页> 外文期刊>IIE Transactions >Optimal pricing policies for tandem queues: Asymptotic optimality
【24h】

Optimal pricing policies for tandem queues: Asymptotic optimality

机译:串联队列最佳定价策略:渐近最优性

获取原文
获取原文并翻译 | 示例

摘要

We study the optimal pricing problem for a tandem queueing system with an arbitrary number of stations, finite buffers, and blocking. The problem is formulated using a Markov decision process model with the objective to maximize the long-run expected time-average revenue or gain of the service provider. Our interest lies in comparing the performances of static and dynamic pricing policies in maximizing the gain. We show that the optimal static pricing policies perform as well as the optimal dynamic pricing policies when the buffer size at station 1 becomes large and the arrival rate is either small or large. More importantly, we propose two specific static pricing policies for systems with small and large arrival rates, respectively, and show that each proposed policy produces a gain converging to the optimal gain with an approximately exponential rate as the buffer size before station 1 becomes large. We learn from numerical results that the proposed static policies perform as well as optimal dynamic policies even for a moderate-sized buffer at station 1. We also learn that there exist cases where optimal static pricing policies are, however, neither optimal nor near-optimal.
机译:我们研究了具有任意数量的站点,有限缓冲区和阻塞的串联排队系统的最佳定价问题。使用Markov决策过程模型制定了该问题,目的是最大化服务提供商的长期预期时间平均收入或增益。我们的兴趣在于比较静态和动态定价政策的性能,以最大化增益。我们表明,当站1的缓冲区大小变大并且到达速率小或大时,最佳静态定价策略以及最佳动态定价策略。更重要的是,我们分别为具有小而大的到达率的系统提出了两种特定的静态定价政策,并表明每个所提出的政策产生与最佳增益一起收敛于最佳增益,随着站点1之前的缓冲率大致呈指数速率。我们从数值结果中学习,即使在站1.中等大小的缓冲区,建议的静态策略也会表现出来的最佳动态策略。然而,我们还要知道存在最佳静态定价策略的情况,然而,既不最佳也不靠近最佳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号