首页> 外文期刊>Queueing Systems >Asymptotically optimal index policies for an abandonment queue with convex holding cost
【24h】

Asymptotically optimal index policies for an abandonment queue with convex holding cost

机译:具有凸持有成本的废弃队列的渐近最优索引策略

获取原文

摘要

We investigate a resource allocation problem in a multi-class server with convex holding costs and user impatience under the average cost criterion. In general, the optimal policy has a complex dependency on all the input parameters and state information. Our main contribution is to derive index policies that can serve as heuristics and are shown to give good performance. Our index policy attributes to each class an index, which depends on the number of customers currently present in that class. The index values are obtained by solving a relaxed version of the optimal stochastic control problem and combining results from restless multi-armed bandits and queueing theory. They can be expressed as a function of the steady-state distribution probabilities of a one-dimensional birth-and-death process. For linear holding cost, the index can be calculated in closed-form and turns out to be independent of the arrival rates and the number of customers present. In the case of no abandonments and linear holding cost, our index coincides with the (cmu )-rule, which is known to be optimal in this simple setting. For general convex holding cost, we derive properties of the index value in limiting regimes: we consider the behavior of the index (i) as the number of customers in a class grows large, which allows us to derive the asymptotic structure of the index policies, (ii) as the abandonment rate vanishes, which allows us to retrieve an index policy proposed for the multi-class M/M/1 queue with convex holding cost and no abandonments, and (iii) as the arrival rate goes to either 0 or (infty ), representing light-traffic and heavy-traffic regimes, respectively. We show that Whittle’s index policy is asymptotically optimal in both light-traffic and heavy-traffic regimes. To obtain further insights into the index policy, we consider the fluid version of the relaxed problem and derive a closed-form expression for the fluid index. The latter is shown to coincide with the index values for the stochastic model in asymptotic regimes. For arbitrary convex holding cost the fluid index can be seen as the (Gcmu /theta )-rule; that is, including abandonments into the generalized (cmu )-rule ((Gcmu )-rule). Numerical experiments for a wide range of parameters have shown that the Whittle index policy and the fluid index policy perform very well for a broad range of parameters.
机译:我们研究了在平均成本标准下具有凸持有成本和用户不耐烦的多类服务器中的资源分配问题。通常,最佳策略对所有输入参数和状态信息具有复杂的依赖性。我们的主要贡献是得出可以用作启发式方法并显示出良好性能的索引策略。我们的索引策略为每个类别分配一个索引,该索引取决于该类别中当前存在的客户数量。通过解决最优随机控制问题的宽松形式,并结合不安定多臂匪和排队论的结果,获得指标值。它们可以表示为一维生死过程的稳态分布概率的函数。对于线性持有成本,该指数可以以封闭形式计算,并且与到达率和在场客户数量无关。在没有遗弃和线性持有成本的情况下,我们的指数与(cmu)规则一致,已知在这种简单设置下最佳。对于一般的凸持有成本,我们在限制制度中得出指数值的属性:随着类别中客户数量的增加,我们考虑指数(i)的行为,这使我们能够得出指数策略的渐近结构,(ii)随着放弃率的消失,这使我们能够检索针对具有凸持有成本且没有放弃的多类M / M / 1队列提出的索引策略,以及(iii)随着到达率变为0或(infty),分别代表轻载和重载状态。我们显示,Whittle的指数政策在轻交通和重交通体制中都渐近最优。为了获得对索引策略的进一步了解,我们考虑松弛问题的流体形式,并导出流体指数的封闭形式。后者在渐近状态下与随机模型的指标值一致。对于任意的凸保持成本,流体指数可以看作是(Gcmu / theta)规则;也就是说,包括放弃进入广义(cmu)规则((Gcmu)规则)。大量参数的数值实验表明,Whittle指数策略和流体指数策略在各种参数下均表现出色。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号