首页> 外文期刊>Information Processing Letters >Feature weighting as a tool for unsupervised feature selection
【24h】

Feature weighting as a tool for unsupervised feature selection

机译:特征权重作为无监督特征选择的工具

获取原文
获取原文并翻译 | 示例

摘要

AbstractFeature selection is a popular data pre-processing step. The aim is to remove some of the features in a data set with minimum information loss, leading to a number of benefits including faster running time and easier data visualisation. In this paper we introduce two unsupervised feature selection algorithms. These make use of a cluster-dependent feature-weighting mechanism reflecting the within-cluster degree of relevance of a given feature. Those features with a relatively low weight are removed from the data set. We compare our algorithms to two other popular alternatives using a number of experiments on both synthetic and real-world data sets, with and without added noisy features. These experiments demonstrate our algorithms clearly outperform the alternatives.HighlightsWe generate cluster-dependent feature weights reflecting the relevance of features.Features with a relatively low weight are removed from a data set.Our methods outperform other popular alternatives in synthetic and real-world data.
机译: 摘要 功能选择是流行的数据预处理步骤。目的是以最小的信息丢失来删除数据集中的某些功能,从而带来许多好处,包括运行时间更快和数据可视化更容易。在本文中,我们介绍了两种无监督的特征选择算法。这些利用了依赖于群集的特征加权机制,该机制反映了给定特征在群集内的相关程度。权重相对较低的那些特征将从数据集中删除。我们通过对合成数据集和真实数据集进行了多次实验,将我们的算法与其他两种流行的替代方法进行了比较,无论是否添加了噪声功能。这些实验证明了我们的算法明显优于其他算法。 突出显示 < ce:list id =“ ls0010”> 我们生成 < ce:para id =“ pr0020” view =“ all”>权重相对较低的特征将从数据集中删除。 我们的方法在合成和真实数据中的表现优于其他流行的替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号