首页> 外文期刊>Information and computation >On the expressivity of elementary linear logic: Characterizing Ptime and an exponential time hierarchy
【24h】

On the expressivity of elementary linear logic: Characterizing Ptime and an exponential time hierarchy

机译:关于基本线性逻辑的表示性:表征Ptime和指数时间层次

获取原文
获取原文并翻译 | 示例

摘要

Elementary linear logic is a simple variant of linear logic due to Girard and which characterizes in the proofs-as-programs approach the class of elementary functions, that is to say functions computable in time bounded by a tower of exponentials of fixed height. Other systems like light and soft linear logics have then been defined to characterize in a similar way the more interesting complexity class of polynomial time functions, but at the price of either a more complicated syntax or of more sophisticated encodings. These logical systems can serve as the basis of type systems for λ-calculus ensuring polynomial time complexity bounds on well-typed terms. This paper aims at reviving interest in elementary linear logic by showing that, despite its simplicity, it can capture smaller complexity classes than that of elementary functions. For that we carry a detailed analysis of its normalization procedure, and study the complexity of functions represented by a given type. We then show that by considering a slight variant of this system, with type fixpoints and free weakening (elementary affine logic with fixpoints) we can characterize the complexity of functions of type !W -° !~(k+2)B, where W and B are respectively types for binary words and booleans. The key point is a sharper study of the normalization bounds. We characterize in this way the class P of polynomial time predicates, and more generally the hierarchy of classes k-EXP, for k ≥ 0, where k-EXP is the union of DTIME(2_k~(n~i)). for i ≥ 1.
机译:基本线性逻辑是吉拉德(Girard)提出的线性逻辑的简单变体,其特征是在程序证明中逼近基本函数的类别,也就是说,可以在时间上计算的函数由固定高度的指数塔限制。然后定义了其他系统,例如轻线性逻辑和软线性逻辑,以类似的方式表征多项式时间函数的更有趣的复杂性类别,但是代价是更复杂的语法或更复杂的编码。这些逻辑系统可以用作λ演算的类型系统的基础,从而确保多项式时间复杂度以良好类型的条件为界。本文旨在通过唤起人们对基本线性逻辑的兴趣,以表明尽管它简单易用,但它可以捕获比基本函数小的复杂度类别。为此,我们对其归一化过程进行了详细分析,并研究了由给定类型表示的函数的复杂性。然后,我们表明,通过考虑该系统的轻微变体,并使用类型固定点和自由弱化(带有固定点的基本仿射逻辑),可以表征类型为!W-°!〜(k + 2)B的函数的复杂性,其中W和B分别是二进制字和布尔值的类型。关键是对归一化边界进行更深入的研究。我们以这种方式表征多项式时间谓词的类P,并且更普遍地描述k-EXP类的层次,其中k≥0,其中k-EXP是DTIME(2_k〜(n〜i))的并集。当我≥1。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号