首页> 外文期刊>Industrial Informatics, IEEE Transactions on >Robust Data-Driven Modeling Approach for Real-Time Final Product Quality Prediction in Batch Process Operation
【24h】

Robust Data-Driven Modeling Approach for Real-Time Final Product Quality Prediction in Batch Process Operation

机译:批处理操作中实时最终产品质量预测的鲁棒数据驱动建模方法

获取原文
获取原文并翻译 | 示例

摘要

Making on-specification products is a primary goal, and also a challenge in chemical batch process operation. Due to the uncertainty of raw materials and instability of operating conditions, it may not produce the desired on-spec final product. It would be helpful if one can predict the product quality during each operation, so that one can make adjustments to process conditions in order to make on-spec product. This paper addresses the issue of real-time prediction of final product quality during a batch operation. First, a data-driven modeling approach is presented. This multimodel approach uses available process information up to the current points to capture their time-varying relationships with the final product quality during the course of operation, so that the prognosis of product quality can be obtained in real-time. Then, due to its data-driven nature, the focus is given on how to make the models robust in order to eliminate the effect of noise, especially, outliers in the data. A model-based outlier detection method is presented. The proposed approach is applied to a generic chemical batch case study, with its prediction performance being evaluated.
机译:制造规格合格的产品是主要目标,也是化学间歇过程操作中的挑战。由于原材料的不确定性和操作条件的不稳定性,它可能无法生产出所需的合格最终产品。如果可以在每次操作过程中预测产品质量,这将很有帮助,以便可以调整工艺条件以生产合格产品。本文解决了批量操作过程中最终产品质量的实时预测问题。首先,提出了一种数据驱动的建模方法。这种多模型方法使用直至当前点的可用过程信息来捕获其在操作过程中与最终产品质量的时变关系,从而可以实时获得产品质量的预测。然后,由于其数据驱动的特性,重点在于如何使模型健壮以消除噪声(尤其是数据中的异常值)的影响。提出了一种基于模型的离群值检测方法。拟议的方法应用于一般化学批处理案例研究,并评估其预测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号