首页> 外文期刊>IEEE transactions on industrial informatics >Sequential Fusion Estimation for RSS-Based Mobile Robots Localization With Event-Driven WSNs
【24h】

Sequential Fusion Estimation for RSS-Based Mobile Robots Localization With Event-Driven WSNs

机译:基于事件驱动的WSN的基于RSS的移动机器人本地化的顺序融合估计

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the sequential fusion estimation for mobile sensor node localizations with received signal strength measurements in mobile wireless sensor networks (MWSNs). The modeling errors induced by the communication uncertainties are considered and the process noise covariance is assumed to follow a uniform distribution. A sequential fusion estimation method based on a novel square root cubature Kalman filter is presented, where the process noise covariance is generated randomly. Moreover, a lower bound of the distribution is given to improve the stability and performance of the estimator. An E-puck robot-based MWSN experiment platform is designed, and both simulations and experiments show that the proposed sequential fusion estimation method help simplify the determination of the process noise covariance while maintaining a satisfactory estimation performance.
机译:本文涉及在移动无线传感器网络(MWSN)中使用接收信号强度测量对移动传感器节点定位进行顺序融合估计。考虑了由通信不确定性引起的建模误差,并假定过程噪声协方差遵循均匀分布。提出了一种基于新颖平方根库曼卡尔曼滤波器的序列融合估计方法,该方法随机产生过程噪声协方差。此外,给出分布的下限以改善估计器的稳定性和性能。设计了一个基于E-puck机器人的MWSN实验平台,仿真和实验均表明,所提出的顺序融合估计方法有助于简化过程噪声协方差的确定,同时保持令人满意的估计性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号