首页> 外文期刊>IEEE transactions on industrial informatics >Extreme RSS Based Indoor Localization for LoRaWAN With Boundary Autocorrelation
【24h】

Extreme RSS Based Indoor Localization for LoRaWAN With Boundary Autocorrelation

机译:基于极端的RSS与边界自相关的Lorawan室内定位

获取原文
获取原文并翻译 | 示例

摘要

The received signal strength (RSS) finger-print-based approaches are widely used for indoor location-based services (LBSs). The emerging long range wide area network (LoRaWAN) is a cost-effective solution for indoor latency-tolerant LBSs attributed to its long-range property. In general, there are serious RSS fluctuations due to fadings along the communication path, thus significantly jeopardizing the localization accuracy. To overcome the challenge, in this article we propose the extreme RSS (ERSS) to stabilize the fingerprint database and formulate boundary autocorrelation to downsize tremendously the searching complexity and thus proliferating localization accuracy. In essence, the RSS fluctuations are modeled as a Bernoulli random process so that the RSS stability can be estimated by a newly defined fluctuation analytic function. To mitigate the impact of the perturbative fluctuation, the ERSS is further defined to cultivate a highly stable and robust fingerprint database which withstands environmental dynamics. In addition, boundary autocorrelation is developed to measure and compare the similarity between the measured RSS values versus the prestored fingerprint database. RSS values with low autocorrelation coefficients are eradicated from the typically lengthy searching. The downsized complexity significantly improves the localization accuracy. Experiments were carried out and the results revealed that the proposed method achieved sub-10-m localization accuracy in indoor environments. Such accuracy is encouraging and superior in contemporary LoRaWAN measurements.
机译:接收的信号强度(RSS)基于手指打印的方法广泛用于室内位置的服务(LBSS)。新兴的远程广域网(LoraWan)是一种经济高效的耐受性贫困LBS的经济型解决方案,归因于其远程性能。通常,由于沿着通信路径的衰落,存在严重的RS波动波动,从而显着危及本地化精度。为了克服挑战,在本文中,我们提出了极端的RSS(ERS)来稳定指纹数据库,并制定边界自相关,以极大地缩小搜索复杂性,从而激增定位精度。实质上,RSS波动被建模为伯努利随机过程,以便通过新定义的波动分析功能估计RSS稳定性。为了减轻扰动波动的影响,进一步定义了ERS,以培养具有耐受环境动态的高度稳定和强大的指纹数据库。此外,开发了边界自相关以测量并比较测量的RSS值与预先存储的指纹数据库之间的相似性。具有低自相关系数的RSS值是从通常冗长的搜索中消除的。缩小的复杂性显着提高了本地化精度。进行实验,结果表明,该方法在室内环境中实现了亚10-M的本地化精度。这种准确性在当代洛拉川测量中令人鼓舞和优越。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号