首页> 外文期刊>IEEE transactions on automation science and engineering >RSS-Based Indoor Localization Using Belief Function Theory
【24h】

RSS-Based Indoor Localization Using Belief Function Theory

机译:基于信度函数理论的基于RSS的室内定位

获取原文
获取原文并翻译 | 示例

摘要

Received signal strength (RSS) is a simple and low-cost method of localization in wireless sensor networks (WSNs) and is of significant interest in ambient intelligence technologies. However, RSS-based indoor localization poses important challenges due to the intrinsic characteristics of RSS measurements. This paper proposes a localization approach that accounts for the imperfection of RSS measurements and the reliability of RSS sources to estimate the target node position in an indoor WSN environment. Non-Gaussian probability density functions are used to model RSS deviations more realistically in the context of indoor environments. In addition, the proposed approach uses the Dempster-Shafer theory to represent and combine separate pieces of information (evidence) provided by more or less reliable or conflicting RSS sources (anchor nodes) on the same hypotheses regarding the target node position. Experiments conducted in two different indoor environments demonstrate the effectiveness of the proposed approach in terms of its accuracy, robustness, and computation time and its superiority compared with state-of-the-art methods.Note to Practitioners-This paper was motivated by the problem of indoor localization in the context of ambient intelligence applications. The localization technique proposed in this paper exploits RSS measurements to estimate the target node position. This technology is very attractive to system designers, due to its simplicity and low cost. This paper also suggests a new approach using, on the one hand, the belief function theory to represent and manage the imperfection of RSS measurements and the reliability of the RSS sources, and, on the other hand, a more realistic modeling of the variability of RSS measurements due to interference and attenuation phenomena that strongly affect signal propagation in indoor environments. Experimental results obtained in two different indoor environments (a residential apartment and a laboratory) are provided to demonstrate the effectiveness of the proposed approach and its superiority compared to state-of-the-art localization techniques.
机译:接收信号强度(RSS)是在无线传感器网络(WSN)中进行定位的一种简单且低成本的方法,并且在环境智能技术中引起了极大的兴趣。然而,由于RSS测量的固有特性,基于RSS的室内定位提出了重要的挑战。本文提出了一种定位方法,该方法考虑了RSS测量的不完善之处以及RSS源的可靠性,从而可以估算室内WSN环境中的目标节点位置。非高斯概率密度函数用于在室内环境中更实际地模拟RSS偏差。另外,提出的方法使用Dempster-Shafer理论来表示和组合由关于目标节点位置的相同假设或多或少可靠或有冲突的RSS源(锚节点)提供的独立信息(证据)。在两个不同的室内环境中进行的实验证明了该方法在准确性,鲁棒性和计算时间方面的有效性,并且与最新方法相比具有优越性。环境智能应用环境中的室内定位的概念。本文提出的定位技术利用RSS测量来估计目标节点位置。由于它的简单性和低成本,该技术对系统设计者非常有吸引力。本文还提出了一种新方法,一方面使用置信函数理论来表示和管理RSS测量的不完善之处以及RSS源的可靠性,另一方面,还可以使用更现实的方法来模拟由于干扰和衰减现象而引起的RSS测量,这些现象严重影响室内环境中的信号传播。提供了在两种不同的室内环境(住宅公寓和实验室)中获得的实验结果,以证明所提出的方法的有效性及其与最新定位技术相比的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号